Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1283328, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130775

RESUMEN

Ongoing SARS-CoV-2 infections are driven by the emergence of various variants, with differential propensities to escape immune containment. Single nucleotide polymorphisms (SNPs) in the RNA genome result in altered protein structures and when these changes occur in the S-gene, encoding the spike protein, the ability of the virus to penetrate host cells to initiate an infection can be significantly altered. As a result, vaccine efficacy and prior immunity may be diminished, potentially leading to new waves of infection. Early detection of SARS-CoV-2 variants using a rapid and scalable approach will be paramount for continued monitoring of new infections. In this study, we developed minor groove-binding (MGB) probe-based qPCR assays targeted to specific SNPs in the S-gene, which are present in variants of concern (VOC), namely the E484K, N501Y, G446S and D405N mutations. A total of 95 archived SARS-CoV-2 positive clinical specimens collected in Johannesburg, South Africa between February 2021 and March 2022 were assessed using these qPCR assays. To independently confirm SNP detection, Sanger sequencing of the relevant region in the S-gene were performed. Where a PCR product could be generated and sequenced, qPCR assays were 100% concordant highlighting the robustness of the approach. These assays, and the approach described, offer the opportunity for easy detection and scaling of targeted detection of variant-defining SNPs in the clinical setting.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Polimorfismo de Nucleótido Simple , Sudáfrica , Mutación
2.
Front Cell Infect Microbiol ; 13: 1186191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37743867

RESUMEN

Introduction: Oral and/or tongue swabs have demonstrated ability to detect Mycobacterium tuberculosis (Mtb) in adults with pulmonary tuberculosis (TB). Swabs provide useful alternative specimens for diagnosis of TB using molecular assays however, the diagnostic pickup by culture requires further improvement and development. Several studies identified the presence of differentially culturable tubercle bacilli (DCTB) populations in a variety of clinical specimens. These organisms do not grow in routine laboratory media and require growth factors in the form of culture filtrate (CF) from logarithmic phase cultures of Mtb H37Rv. Methods: Herein, we compared the diagnostic performance of sputum and tongue swabs using Mycobacterial Growth Indicator Tube (MGIT) assays, Auramine smear, GeneXpert and DCTB assays supplemented with or without CF. Results: From 89 eligible participants, 83 (93%), 66 (74%) and 79 (89%) were sputum positive by MGIT, smear and GeneXpert, respectively. The corresponding tongue swabs displayed a lower sensitivity with 39 (44%), 2 (2.0%) and 18 (20%) participants respectively for the same tests. We aimed to improve the diagnostic yield by utilizing DCTB assays. Sputum samples were associated with a higher positivity rate for CF-augmented DCTB at 82/89 (92%) relative to tongue swabs at 36/89 (40%). Similarly, sputum samples had a higher positivity rate for DCTB populations that were CF-independent at 64/89 (72%) relative to tongue swabs at 26/89 (29%). DCTB positivity increased significantly, relative to MGIT culture, for tongue swabs taken from HIV-positive participants. We next tested whether the use of an alternative smear stain, DMN-Trehalose, would improve diagnostic yield but noted no substantial increase. Discussion: Collectively, our data show that while tongue swabs yield lower bacterial numbers for diagnostic testing, the use of growth supplementation may improve detection of TB particularly in HIV-positive people but this requires further interrogation in larger studies.


Asunto(s)
Bacillus , Infecciones por VIH , Lacticaseibacillus casei , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Adulto , Humanos , Tuberculosis Pulmonar/diagnóstico , Firmicutes , Infecciones por VIH/complicaciones , Infecciones por VIH/diagnóstico
3.
Front Cell Infect Microbiol ; 12: 1031775, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467724

RESUMEN

COVID-19 has resulted in nearly 598 million infections and over 6.46 million deaths since the start of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2019. The rapid onset of the pandemic, combined with the emergence of viral variants, crippled many health systems particularly from the perspective of coping with massive diagnostic loads. Shortages of diagnostic kits and capacity forced laboratories to store clinical samples resulting in huge backlogs, the effects of this on diagnostic pickup have not been fully understood. Herein, we investigated the impact of storing SARS-CoV-2 inoculated dry swabs on the detection and viability of four viral strains over a period of 7 days. Viral load, as detected by qRT-PCR, displayed no significant degradation during this time for all viral loads tested. In contrast, there was a ca. 2 log reduction in viral viability as measured by the tissue culture infectious dose (TCID) assay, with 1-3 log viable virus detected on dry swabs after 7 days. When swabs were coated with 102 viral copies of the Omicron variant, no viable virus was detected after 24 hours following storage at 4°C or room temperature. However there was no loss of PCR signal over 7 days. All four strains showed comparable growth kinetics and survival when cultured in Vero E6 cells. Our data provide information on the viability of SARS-CoV-2 on stored swabs in a clinical setting with important implications for diagnostic pickup and laboratory processing protocols. Survival after 7 days of SARS-CoV-2 strains on swabs with high viral loads may impact public health and biosafety practices in diagnostic laboratories.


Asunto(s)
Prueba de COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , SARS-CoV-2/genética , Carga Viral/métodos , Prueba de COVID-19/métodos
4.
Sci Rep ; 9(1): 5194, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30914728

RESUMEN

Penicillin binding proteins (PBPs) are the target of numerous antimicrobial agents that disrupt bacterial cell wall synthesis. In mycobacteria, cell elongation occurs through insertion of nascent cell wall material in the sub-polar region, a process largely driven by High Molecular Weight PBPs. In contrast, the function of DD-carboxypeptidases (DD-CPases), which are Low Molecular Weight Class 1C PBPs, in mycobacteria remains poorly understood. Mycobacterium smegmatis encodes four putative DD-CPase homologues, which display homology to counterparts in Escherichia coli. Herein, we demonstrate that these are expressed in varying abundance during growth. Deletion of MSMEG_1661, MSMEG_2433 or MSMEG_2432, individually resulted in no defects in growth, cell morphology, drug susceptibility or spatial incorporation of new peptidoglycan. In contrast, deletion of MSMEG_6113 (dacB) was only possible in a merodiploid strain expressing the homologous M. tuberculosis operon encoding Rv3627c (dacB), Rv3626c, Rv3625c (mesJ) and Rv3624c (hpt), suggestive of essentiality. To investigate the role of this operon in mycobacterial growth, we depleted gene expression using anhydrotetracycline-responsive repressors and noted reduced bipolar peptidoglycan synthesis. These data point to a possible role for this four gene operon, which is highly conserved across all mycobacterial species, in regulating spatial localization of peptidoglycan synthesis.


Asunto(s)
Carboxipeptidasas/genética , Genes Bacterianos , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/genética , Carboxipeptidasas/metabolismo , Biología Computacional , Eliminación de Gen , Familia de Multigenes , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/ultraestructura , Operón/genética , Peptidoglicano/metabolismo , Regiones Promotoras Genéticas/genética , Homología de Secuencia de Ácido Nucleico
5.
IUBMB Life ; 70(9): 855-868, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29717815

RESUMEN

Disruption of peptidoglycan (PG) biosynthesis in the bacterial cell wall by ß-lactam antibiotics has transformed therapeutic options for bacterial infections. These antibiotics target the transpeptidase domains in penicillin binding proteins (PBPs), which can be classified into high and low molecular weight (LMW) counterparts. While the essentiality of the former has been extensively demonstrated, the physiological roles of LMW PBPs remain poorly understood. Herein, we review the function of LMW PBPs, ß-lactamases and ld-transpeptidases (Ldts) in pathogens associated with respiratory tract infections. More specifically, we explore their roles in mediating ß-lactam resistance. Using a comparative genomics approach, we identified a high degree of genetic redundancy for LMW PBPs which retain the motifs, SxxN, SxN and KTG required for catalytic activity. Differences in domain architecture suggest distinct physiological roles, possibly related to bacterial cell cycle and/or adaptation to various environmental conditions. Many of the LMW PBPs play an important role in ß-lactam resistance either through mutation or variation in abundance. In all of the bacterial genomes assessed, at least one ß-lactamase homologue is present, suggesting that enzymatic degradation of ß-lactams is a highly conserved resistance mechanism. Furthermore, the presence of Ldt homologues in the majority of species surveyed suggests that alternative PG crosslinking may further mediate ß-lactam drug resistance. A deeper understanding of the interplay between these different mechanisms of ß-lactam resistance will provide a framework for new therapeutics, which are urgently required given the rapid emergence of antimicrobial resistance. © 2018 IUBMB Life, 70(9):855-868, 2018.


Asunto(s)
Aminoaciltransferasas/metabolismo , Bacterias/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Infecciones del Sistema Respiratorio/metabolismo , Resistencia betalactámica , beta-Lactamasas/metabolismo , beta-Lactamas/farmacología , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Humanos , Peso Molecular , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/microbiología
6.
Sci Transl Med ; 10(430)2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29491187

RESUMEN

Tuberculosis (TB) is the leading cause of death from an infectious bacterial disease. Poor diagnostic tools to detect active disease plague TB control programs and affect patient care. Accurate detection of live Mycobacterium tuberculosis (Mtb), the causative agent of TB, could improve TB diagnosis and patient treatment. We report that mycobacteria and other corynebacteria can be specifically detected with a fluorogenic trehalose analog. We designed a 4-N,N-dimethylamino-1,8-naphthalimide-conjugated trehalose (DMN-Tre) probe that undergoes >700-fold increase in fluorescence intensity when transitioned from aqueous to hydrophobic environments. This enhancement occurs upon metabolic conversion of DMN-Tre to trehalose monomycolate and incorporation into the mycomembrane of Actinobacteria. DMN-Tre labeling enabled the rapid, no-wash visualization of mycobacterial and corynebacterial species without nonspecific labeling of Gram-positive or Gram-negative bacteria. DMN-Tre labeling was detected within minutes and was inhibited by heat killing of mycobacteria. Furthermore, DMN-Tre labeling was reduced by treatment with TB drugs, unlike the clinically used auramine stain. Lastly, DMN-Tre labeled Mtb in TB-positive human sputum samples comparably to auramine staining, suggesting that this operationally simple method may be deployable for TB diagnosis.


Asunto(s)
Mycobacterium tuberculosis/aislamiento & purificación , Mycobacterium tuberculosis/metabolismo , Esputo/microbiología , Actinomycetales/aislamiento & purificación , Actinomycetales/metabolismo , Humanos , Técnicas de Diagnóstico Molecular/métodos , Sondas Moleculares , Mycobacterium/aislamiento & purificación , Mycobacterium/metabolismo , Naftalimidas/química , Trehalosa/química , Tuberculosis Pulmonar/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...