Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cereb Blood Flow Metab ; 43(8): 1285-1300, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37026455

RESUMEN

In this study we evaluate the performance of a fully automated analytical framework for FDOPA PET neuroimaging data, and its sensitivity to demographic and experimental variables and processing parameters. An instance of XNAT imaging platform was used to store the King's College London institutional brain FDOPA PET imaging archive, alongside individual demographics and clinical information. By re-engineering the historical Matlab-based scripts for FDOPA PET analysis, a fully automated analysis pipeline for imaging processing and data quantification was implemented in Python and integrated in XNAT. The final data repository includes 892 FDOPA PET scans organized from 23 different studies. We found good reproducibility of the data analysis by the automated pipeline (in the striatum for the Kicer: for the controls ICC = 0.71, for the psychotic patients ICC = 0.88). From the demographic and experimental variables assessed, gender was found to most influence striatal dopamine synthesis capacity (F = 10.7, p < 0.001), with women showing greater dopamine synthesis capacity than men. Our automated analysis pipeline represents a valid resourse for standardised and robust quantification of dopamine synthesis capacity using FDOPA PET data. Combining information from different neuroimaging studies has allowed us to test it comprehensively and to validate its replicability and reproducibility performances on a large sample size.


Asunto(s)
Dihidroxifenilalanina , Dopamina , Masculino , Humanos , Femenino , Dopamina/metabolismo , Reproducibilidad de los Resultados , Tomografía de Emisión de Positrones/métodos , Neuroimagen
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2712-2715, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36083944

RESUMEN

With the modernization and digitisation of the healthcare system, the need for exchanging medical data has become increasingly compelling. Biomedical imaging has been no exception, where the gathering of medical imaging acquisitions from multi-site collaborations have enabled to reach data sizes never imaginable until few years ago. Usually, medical imaging data have very large volume and diverse complexity, requiring bespoken transfer systems that protect personal information as well as data integrity. Despite many digital innovations, there are still technical and regulatory bottlenecks that make biomedical imaging data exchange challenging. Here we present Bitbox, a web-based application which provides a reliable yet straightforward service to securely exchange medical imaging data. With Bitbox, both imaging and non-imaging data of any type can be transferred from any external and independent site into a centralized server. A showcase of the system will be illustrated for the COVID-19 Clinical Neuroscience Study (COVID-CNS) project, a UK-wide experimental medicine study to investigate the neurological and neuropsychiatric effects of COVID-19 infections in hundreds of patients.


Asunto(s)
COVID-19 , Nube Computacional , Atención a la Salud , Diagnóstico por Imagen , Humanos , Difusión de la Información
3.
Comput Methods Programs Biomed ; 208: 106239, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34289438

RESUMEN

INTRODUCTION: With biomedical imaging research increasingly using large datasets, it becomes critical to find operator-free methods to quality control the data collected and the associated analysis. Attempts to use artificial intelligence (AI) to perform automated quality control (QC) for both single-site and multi-site datasets have been explored in some neuroimaging techniques (e.g. EEG or MRI), although these methods struggle to find replication in other domains. The aim of this study is to test the feasibility of an automated QC pipeline for brain [18F]-FDOPA PET imaging as a biomarker for the dopamine system. METHODS: Two different Convolutional Neural Networks (CNNs) were used and combined to assess spatial misalignment to a standard template and the signal-to-noise ratio (SNR) relative to 200 static [18F]-FDOPA PET images that had been manually quality controlled from three different PET/CT scanners. The scans were combined with an additional 400 scans, in which misalignment (200 scans) and low SNR (200 scans) were simulated. A cross-validation was performed, where 80% of the data were used for training and 20% for validation. Two additional datasets of [18F]-FDOPA PET images (50 and 100 scans respectively with at least 80% of good quality images) were used for out-of-sample validation. RESULTS: The CNN performance was excellent in the training dataset (accuracy for motion: 0.86 ± 0.01, accuracy for SNR: 0.69 ± 0.01), leading to 100% accurate QC classification when applied to the two out-of-sample datasets. Data dimensionality reduction affected the generalizability of the CNNs, especially when the classifiers were applied to the out-of-sample data from 3D to 1D datasets. CONCLUSIONS: This feasibility study shows that it is possible to perform automatic QC of [18F]-FDOPA PET imaging with CNNs. The approach has the potential to be extended to other PET tracers in both brain and non-brain applications, but it is dependent on the availability of large datasets necessary for the algorithm training.


Asunto(s)
Aprendizaje Profundo , Inteligencia Artificial , Encéfalo/diagnóstico por imagen , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...