Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38617208

RESUMEN

Compromised vascular supply and insufficient neovascularization impede bone repair, increasing risk of non-union. Cyr61, Cysteine-rich angiogenic inducer of 61kD (also known as CCN1), is a matricellular growth factor that is regulated by mechanical cues during fracture repair. Here, we map the distribution of endogenous Cyr61 during bone repair and evaluate the effects of recombinant Cyr61 delivery on vascularized bone regeneration. In vitro, Cyr61 treatment did not alter chondrogenesis or osteogenic gene expression, but significantly enhanced angiogenesis. In a mouse femoral fracture model, Cyr61 delivery did not alter cartilage or bone formation, but accelerated neovascularization during fracture repair. Early initiation of ambulatory mechanical loading disrupted Cyr61-induced neovascularization. Together, these data indicate that Cyr61 delivery can enhance angiogenesis during bone repair, particularly for fractures with stable fixation, and may have therapeutic potential for fractures with limited blood vessel supply.

2.
J Biomech ; 125: 110580, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34198021

RESUMEN

Chondrocyte maturation during cartilage development occurs under diverse and dynamic mechanical environments. Mechanical stimulation through bioreactor culture may mimic these conditions to direct cartilage tissue engineering in vitro. Mechanical cues can promote chondrocyte homeostasis or hypertrophy and mineralization, depending potentially on the timing of load application. Here, we tested the effects of chondrogenic priming duration on the response of engineered human cartilage constructs to dynamic mechanical compression. We cultured human bone marrow stromal cells (hMSCs) in fibrin hydrogels under chondrogenic priming conditions for periods of 0, 2, 4, or 6 weeks prior to two weeks of either static culture or dynamic compression. We measured construct mechanical properties, cartilage matrix composition, and gene expression. Dynamic compression increased the equilibrium and dynamic modulus of the engineered tissue, depending on the duration of chondrogenic priming. For priming times of 2 weeks or greater, dynamic compression enhanced COL2A1 and AGGRECAN mRNA expression at the end of the loading period, but did not alter total collagen or glycosaminoglycan matrix deposition. Load initiation at priming times of 4 weeks or less repressed transient osteogenic signaling (RUNX2, OPN) and expression of CYR61, a YAP/TAZ-TEAD-target gene. No suppression of osteogenic gene expression was observed if loading was initiated after 6 weeks of in vitro priming, when mechanical stimulation was observed to increase the expression of type X collagen. Taken together, these data demonstrate that the duration of in vitro chondrogenic priming regulates the cell response to dynamic mechanical compression and suggests that early loading may preserve chondrocyte homeostasis while delayed loading may support cartilage maturation.


Asunto(s)
Condrogénesis , Células Madre Mesenquimatosas , Cartílago , Células Cultivadas , Condrocitos , Humanos , Ingeniería de Tejidos
3.
Curr Osteoporos Rep ; 18(5): 526-540, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32712794

RESUMEN

PURPOSE OF REVIEW: The development of the skeleton is controlled by cellular decisions determined by the coordinated activation of multiple transcription factors. Recent evidence suggests that the transcriptional regulator proteins, Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), could have important roles in directing the activity of these transcriptional programs. However, in vitro evidence for the roles of YAP and TAZ in skeletal cells has been hopelessly contradictory. The goals of this review are to provide a cross-sectional view on the state of the field and to synthesize the available data toward a unified perspective. RECENT FINDINGS: YAP and TAZ are regulated by diverse upstream signals and interact downstream with multiple transcription factors involved in skeletal development, positioning YAP and TAZ as important signal integration nodes in an hourglass-shaped signaling pathway. Here, we provide a survey of putative transcriptional co-effectors for YAP and TAZ in skeletal cells. Synthesizing the in vitro data, we conclude that TAZ is consistently pro-osteogenic in function, while YAP can exhibit either pro- or anti-osteogenic activity depending on cell type and context. Synthesizing the in vivo data, we conclude that YAP and TAZ combinatorially promote developmental bone formation, bone matrix homeostasis, and endochondral fracture repair by regulating a variety of transcriptional programs depending on developmental stage. Here, we discuss the current understanding of the roles of the transcriptional regulators YAP and TAZ in skeletal development, and provide recommendations for continued study of molecular mechanisms, mechanotransduction, and therapeutic implications for skeletal disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Desarrollo Óseo/genética , Matriz Ósea/metabolismo , Curación de Fractura/genética , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Factores de Transcripción/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Homeostasis/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Factores de Transcripción/fisiología , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA