Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 9(3): 220120, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35316950

RESUMEN

Coordinated responses in eusocial insect colonies arise from worker interaction networks that enable collective processing of ecologically relevant information. Previous studies have detected a structural motif in these networks known as the feed-forward loop, which functions to process information in other biological regulatory networks (e.g. transcriptional networks). However, the processes that generate feed-forward loops among workers and the consequences for information flow within the colony remain largely unexplored. We constructed an agent-based model to investigate how individual variation in activity and movement shaped the production of feed-forward loops in a simulated insect colony. We hypothesized that individual variation along these axes would generate feed-forward loops by driving variation in interaction frequency among workers. We found that among-individual variation in activity drove over-representation of feed-forward loops in the interaction networks by determining the directionality of interactions. However, despite previous work linking feed-forward loops with efficient information transfer, activity variation did not promote faster or more efficient information flow, thus providing no support for the hypothesis that feed-forward loops reflect selection for enhanced collective functioning. Conversely, individual variation in movement trajectory, despite playing no role in generating feed-forward loops, promoted fast and efficient information flow by linking together otherwise unconnected regions of the nest.

2.
R Soc Open Sci ; 7(11): 201215, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33391803

RESUMEN

Social learning, where information is acquired from others, is taxonomically widespread. There is growing evidence that animals selectively employ 'social learning strategies', which determine e.g. when to copy others instead of learning asocially and whom to copy. Furthermore, once animals have acquired new information, e.g. regarding profitable resources, it is beneficial for them to commit it to long-term memory (LTM), especially if it allows access to profitable resources in the future. Research into social learning strategies and LTM has covered a wide range of taxa. However, otters (subfamily Lutrinae), popular in zoos due to their social nature and playfulness, remained neglected until a recent study provided evidence of social learning in captive smooth-coated otters (Lutrogale perspicillata), but not in Asian short-clawed otters (Aonyx cinereus). We investigated Asian short-clawed otters' learning strategies and LTM performance in a foraging context. We presented novel extractive foraging tasks twice to captive family groups and used network-based diffusion analysis to provide evidence of a capacity for social learning and LTM in this species. A major cause of wild Asian short-clawed otter declines is prey scarcity. Furthering our understanding of how they learn about and remember novel food sources could inform key conservation strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...