Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Haematologica ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450513

RESUMEN

Mitapivat, a pyruvate kinase (PK) activator, shows great potential as a sickle cell disease (SCD)- modifying therapy. Safety and efficacy of mitapivat as a long-term maintenance therapy is currently being evaluated in two open-label studies. Here we apply a comprehensive multi-omics approach to investigate the impact of activating PK on red blood cells (RBCs) from 15 SCD patients. HbSS patients were enrolled in one of the open label, extended studies (NCT04610866). Leuko-depleted RBCs obtained from fresh whole blood at baseline (visit 1, V1), prior to drug initiation and longitudinal time points over the course of the study were processed for multiomics through a stepwise extraction of metabolites, lipids and proteins. Mitapivat therapy had significant effects on the metabolome, lipidome and proteome of SCD RBCs. Mitapivat decreased 2,3-diphosphoglycerate (DPG) levels, increased adenosine triphosphate (ATP) levels, and improved hematologic and sickling parameters in patients with SCD. Agreement between omics measurements and clinical measurements confirmed the specificity of mitapivat on targeting late glycolysis, with glycolytic metabolites ranking as the top correlates to parameters of hemoglobin S (HbS) oxygen affinity (p50) and sickling kinetics (t50) during treatment. Mitapivat markedly reduced levels of proteins of mitochondrial origin within 2 weeks of initiation of drug treatment, with minimal changes in the reticulocyte counts. The first six months of treatment also witnessed transient elevation of lysophosphatidylcholines and oxylipins with depletion in free fatty acids, suggestive of an effect on membrane lipid remodeling. Multi-omics analysis of RBCs identified benefits for glycolysis, as well as activation of the Lands cycle.

2.
Blood Adv ; 8(7): 1806-1816, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38181784

RESUMEN

ABSTRACT: Stable, mixed-donor-recipient chimerism after allogeneic hematopoietic stem cell transplantation (HSCT) for patients with sickle cell disease (SCD) is sufficient for phenotypic disease reversal, and results from differences in donor/recipient-red blood cell (RBC) survival. Understanding variability and predictors of RBC survival among patients with SCD before and after HSCT is critical for gene therapy research which seeks to generate sufficient corrected hemoglobin to reduce polymerization thereby overcoming the red cell pathology of SCD. This study used biotin labeling of RBCs to determine the lifespan of RBCs in patients with SCD compared with patients who have successfully undergone curative HSCT, participants with sickle cell trait (HbAS), and healthy (HbAA) donors. Twenty participants were included in the analysis (SCD pre-HSCT: N = 6, SCD post-HSCT: N = 5, HbAS: N = 6, and HbAA: N = 3). The average RBC lifespan was significantly shorter for participants with SCD pre-HSCT (64.1 days; range, 35-91) compared with those with SCD post-HSCT (113.4 days; range, 105-119), HbAS (126.0 days; range, 119-147), and HbAA (123.7 days; range, 91-147) (P<.001). RBC lifespan correlated with various hematologic parameters and strongly correlated with the average final fraction of sickled RBCs after deoxygenation (P<.001). No adverse events were attributable to the use of biotin and related procedures. Biotin labeling of RBCs is a safe and feasible methodology to evaluate RBC survival in patients with SCD before and after HSCT. Understanding differences in RBC survival may ultimately guide gene therapy protocols to determine hemoglobin composition required to reverse the SCD phenotype as it relates directly to RBC survival. This trial was registered at www.clinicaltrials.gov as #NCT04476277.


Asunto(s)
Anemia de Células Falciformes , Trasplante de Células Madre Hematopoyéticas , Humanos , Anemia de Células Falciformes/patología , Biotina , Eritrocitos/patología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Hemoglobinas
3.
Blood ; 143(10): 866-871, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38118071

RESUMEN

ABSTRACT: Pyruvate kinase (PK) is a key enzyme in glycolysis, the sole source of adenosine triphosphate, which is essential for all energy-dependent activities of red blood cells. Activating PK shows great potential for treating a broad range of hemolytic anemias beyond PK deficiency, because they also enhance activity of wild-type PK. Motivated by observations of sickle-cell complications in sickle-trait individuals with concomitant PK deficiency, activating endogenous PK offers a novel and promising approach for treating patients with sickle-cell disease.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Anemia de Células Falciformes , Piruvato Quinasa/deficiencia , Errores Innatos del Metabolismo del Piruvato , Humanos , Anemia Hemolítica Congénita no Esferocítica/tratamiento farmacológico , Anemia Hemolítica Congénita no Esferocítica/etiología , Eritrocitos , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/complicaciones
4.
J Chem Phys ; 157(18): 184104, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36379793

RESUMEN

Understanding allosteric interactions in proteins has become one of the major research areas in protein science. The original aim of the famous theoretical model of Monod, Wyman, and Changeux (MWC) was to explain the regulation of enzymatic activity in biochemical pathways. However, its first successful quantitative application was to explain cooperative oxygen binding by hemoglobin, often called the "hydrogen molecule of biology." The combination of its original application and the enormous amount of research on hemoglobin has made it the paradigm for studies of allostery, especially for multi-subunit proteins, and for the development of statistical mechanical models to describe how structure determines function. This article is a historical account of the development of statistical mechanical models for hemoglobin to explain both the cooperative binding of oxygen (called homotropic effects by MWC) and how oxygen binding is affected by ligands that bind distant from the heme oxygen binding site (called heterotropic allosteric effects by MWC). This account makes clear the many remaining challenges for describing the relationship of structure to function for hemoglobin in terms of a satisfactory statistical mechanical model.


Asunto(s)
Hemoglobinas , Oxígeno , Regulación Alostérica , Estudios Retrospectivos , Hemoglobinas/química , Ligandos , Oxígeno/química
5.
Front Mol Biosci ; 9: 1062346, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406264

RESUMEN

I was fortunate to do my military service during the Vietnam era as a medical officer at the National Institutes of Health (NIH) in Bethesda, Maryland. My first research at NIH was concerned with making a variety of optical measurements on nucleic acid bases and proteins, including single crystal spectra in linearly polarized light and near infrared circular dichroism, interpreting the spectra using molecular orbital and crystal field theories. What I do now is drug discovery, a field at the opposite end of the scientific spectrum. This article gives a brief account of my transition from spectroscopy to sickle cell hemoglobin polymerization to protein folding to drug discovery for treating sickle cell disease. My lab recently developed a high throughput assay to screen the 12,657 compounds of the California Institute of Biomedical Research ReFrame drug repurposing library. This is a precious library because the compounds have either been FDA approved or have been tested in clinical trials. Since the 1970s numerous agents have been reported in the literature to inhibit HbS polymerization and/or sickling with only one successful drug, hydroxyurea, and another of dubious value, voxelotor, even though it has been approved by the FDA. Our screen has discovered 106 anti-sickling agents in the ReFrame compound library. We estimate that as many as 21 of these compounds could become oral drugs for treating sickle cell disease because they inhibit at concentrations typical of the free concentrations of oral drugs in human serum.

6.
Proc Natl Acad Sci U S A ; 119(40): e2210779119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161945

RESUMEN

Stem cell transplantation and genetic therapies offer potential cures for patients with sickle cell disease (SCD), but these options require advanced medical facilities and are expensive. Consequently, these treatments will not be available for many years to the majority of patients suffering from this disease. What is urgently needed now is an inexpensive oral drug in addition to hydroxyurea, the only drug approved by the FDA that inhibits sickle-hemoglobin polymerization. Here, we report the results of the first phase of our phenotypic screen of the 12,657 compounds of the Scripps ReFRAME drug repurposing library using a recently developed high-throughput assay to measure sickling times following deoxygenation to 0% oxygen of red cells from sickle trait individuals. The ReFRAME library is a very important collection because the compounds are either FDA-approved drugs or have been tested in clinical trials. From dose-response measurements, 106 of the 12,657 compounds exhibit statistically significant antisickling at concentrations ranging from 31 nM to 10 µM. Compounds that inhibit sickling of trait cells are also effective with SCD cells. As many as 21 of the 106 antisickling compounds emerge as potential drugs. This estimate is based on a comparison of inhibitory concentrations with free concentrations of oral drugs in human serum. Moreover, the expected therapeutic potential for each level of inhibition can be predicted from measurements of sickling times for cells from individuals with sickle syndromes of varying severity. Our results should motivate others to develop one or more of these 106 compounds into drugs for treating SCD.


Asunto(s)
Anemia de Células Falciformes , Antidrepanocíticos , Antidrepanocíticos/farmacología , Antidrepanocíticos/uso terapéutico , Reposicionamiento de Medicamentos , Hemoglobina Falciforme , Humanos , Hidroxiurea/farmacología , Oxígeno/uso terapéutico
7.
Blood ; 140(19): 2053-2062, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-35576529

RESUMEN

Polymerization of deoxygenated hemoglobin S underlies the pathophysiology of sickle cell disease (SCD). In activating red blood cell pyruvate kinase and glycolysis, mitapivat (AG-348) increases adenosine triphosphate (ATP) levels and decreases the 2,3-diphosphoglycerate (2,3-DPG) concentration, an upstream precursor in glycolysis. Both changes have therapeutic potential for patients with SCD. Here, we evaluated the safety and tolerability of multiple ascending doses of mitapivat in adults with SCD with no recent blood transfusions or changes in hydroxyurea or l-glutamine therapy. Seventeen subjects were enrolled; 1 subject was withdrawn shortly after starting the study. Sixteen subjects completed 3 ascending dose levels of mitapivat (5, 20, and 50 mg, twice daily [BID]) for 2 weeks each; following a protocol amendment, the dose was escalated to 100 mg BID in 9 subjects. Mitapivat was well tolerated at all dose levels, with the most common treatment-emergent adverse events (AEs) being insomnia, headache, and hypertension. Six serious AEs (SAEs) included 4 vaso-occlusive crises (VOCs), non-VOC-related shoulder pain, and a preexisting pulmonary embolism. Two VOCs occurred during drug taper and were possibly drug related; no other SAEs were drug related. Mean hemoglobin increase at the 50 mg BID dose level was 1.2 g/dL, with 9 of 16 (56.3%) patients achieving a hemoglobin response of a ≥1 g/dL increase compared with baseline. Mean reductions in hemolytic markers and dose-dependent decreases in 2,3-DPG and increases in ATP were also observed. This study provides proof of concept that mitapivat has disease-modifying potential in patients with SCD. This trial was registered at www.clinicaltrials.gov as #NCT04000165.


Asunto(s)
Anemia de Células Falciformes , Piruvato Quinasa , Adulto , Humanos , Ácido Pirúvico , 2,3-Difosfoglicerato , Anemia de Células Falciformes/tratamiento farmacológico , Hemoglobinas , Adenosina Trifosfato
8.
Blood Cells Mol Dis ; 95: 102660, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35366607

RESUMEN

Polymerization of deoxygenated sickle hemoglobin (HbS) leads to erythrocyte sickling. Enhancing activity of the erythrocyte glycolytic pathway has anti-sickling potential as this reduces 2,3-diphosphoglycerate (2,3-DPG) and increases ATP, factors that decrease HbS polymerization and improve erythrocyte membrane integrity. These factors can be modulated by mitapivat, which activates erythrocyte pyruvate kinase (PKR) and improves sickling kinetics in SCD patients. We investigated mechanisms by which mitapivat may impact SCD by examining its effects in the Townes SCD mouse model. Control (HbAA) and sickle (HbSS) mice were treated with mitapivat or vehicle. Surprisingly, HbSS had higher PKR protein, higher ATP, and lower 2,3-DPG levels, compared to HbAA mice, in contrast with humans with SCD, in whom 2,3-DPG is elevated compared to healthy subjects. Despite our inability to investigate 2,3-DPG-mediated sickling and hemoglobin effects, mitapivat yielded potential benefits in HbSS mice. Mitapivat further increased ATP without significantly changing 2,3-DPG or hemoglobin levels, and decreased levels of leukocytosis, erythrocyte oxidative stress, and the percentage of erythrocytes that retained mitochondria in HbSS mice. These data suggest that, even though Townes HbSS mice have increased PKR activity, further activation of PKR with mitapivat yields potentially beneficial effects that are independent of changes in sickling or hemoglobin levels.


Asunto(s)
Anemia de Células Falciformes , 2,3-Difosfoglicerato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Modelos Animales de Enfermedad , Eritrocitos/metabolismo , Hemoglobina Falciforme/metabolismo , Hemoglobinas/análisis , Humanos , Ratones , Mitocondrias/metabolismo , Estrés Oxidativo , Piperazinas , Quinolinas
9.
Mol Aspects Med ; 84: 100971, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34274158

RESUMEN

Basic research on hemoglobin has been essential for understanding the origin and treatment of many hematological disorders due to abnormal hemoglobins. The most important of the hemoglobinopathies is sickle cell disease - Linus Pauling's "molecular disease" that gave birth to molecular medicine. In this review, I will describe the contributions of basic biophysical research on normal and sickle cell hemoglobin (HbS) to understanding the molecular pathogenesis of the disease and providing the conceptual basis for the various approaches to drug therapy that target HbS polymerization. Most prominent among these are the experimental results on the solubility of HbS as a function of oxygen saturation explained by the allosteric model of Monod, Wyman, and Changeux and the Gill-Wyman thermodynamic linkage relation between solubility and oxygen binding, the solubility of mixtures of HbS with normal or fetal hemoglobin explained by Minton's thermodynamic model, and the highly unusual kinetics of HbS polymerization explained by a novel double nucleation mechanism that also accounts for the aggregation kinetics of the Alzheimer's peptide. The HbS polymerization kinetics are of great importance to understanding the pathophysiology and clinical course, as well as guiding drug development for treating this common and severe disease. The article focuses primarily on experimental and theoretical results from my lab, so it is not a comprehensive review of the subject.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Falciforme , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Hemoglobina Falciforme/química , Hemoglobina Falciforme/metabolismo , Hemoglobina Falciforme/uso terapéutico , Hemoglobinas/química , Humanos , Cinética , Termodinámica
10.
J Biol Phys ; 47(4): 337-353, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34762226

RESUMEN

Hans Frauenfelder's discovery of conformational substates in studies of myoglobin carbon monoxide geminate rebinding kinetics at cryogenic temperatures (Austin RH, Beeson KW, Eisenstein L, Frauenfelder H, & Gunsalus IC (1975) Dynamics of Ligand Binding to Myoglobin. Biochemistry 14(24):5355-5373) followed by his introduction of energy landscape theory with Peter Wolynes (Frauenfelder H, Sligar SG, & Wolynes PG (1991) The Energy Landscapes and Motions of Proteins. Science 254(5038):1598-1603) marked the beginning of a new era in the physics and physical chemistry of proteins. Their work played a major role in demonstrating the power and importance of dynamics and of Kramers reaction rate theory for understanding protein function. The biggest impact of energy landscape theory has been in the protein folding field, which is well-known and has been documented in numerous articles and reviews, including a recent one of my own (Eaton WA (2021) Modern Kinetics and Mechanism of Protein Folding: a Retrospective. J. Phys. Chem. B. 125(14):3452-3467). Here I will describe the much less well-known impact of their modern view of proteins on both experimental and theoretical studies of hemoglobin kinetics and function. I will first describe how Frauenfelder's experiments motivated and influenced my own research on myoglobin, which were key ingredients to my work on understanding hemoglobin.


Asunto(s)
Mioglobina , Física , Hemoglobinas , Cinética , Mioglobina/metabolismo , Conformación Proteica , Estudios Retrospectivos
11.
Blood ; 138(13): 1172-1181, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34197597

RESUMEN

The issue of treating sickle cell disease with drugs that increase hemoglobin oxygen affinity has come to the fore with the US Food and Drug Administration approval in 2019 of voxelotor, the only antisickling drug approved since hydroxyurea in 1998. Voxelotor reduces sickling by increasing the concentration of the nonpolymerizing, high oxygen affinity R (oxy) conformation of hemoglobin S (HbS). Treatment of sickle cell patients with voxelotor increases Hb levels and decreases indicators of hemolysis, but with no indication as yet that it reduces the frequency of pain episodes. In this study, we used the allosteric model of Monod, Wyman, and Changeux to simulate whole-blood oxygen dissociation curves and red cell sickling in the absence and presence of voxelotor under the in vivo conditions of rapid oxygen pressure decreases. Our modeling agrees with results of experiments using a new robust assay, which shows the large, expected decrease in sickling from the drug. The modeling indicates, however, that the increase in oxygen delivery from reduced sickling is largely offset by the increase in oxygen affinity. The net result is that the drug increases overall oxygen delivery only at the very lowest oxygen pressures. However, reduction of sickling mitigates red cell damage and explains the observed decrease in hemolysis. More importantly, our modeling of in vivo oxygen dissociation, sickling, and oxygen delivery suggests that drugs that increase fetal Hb or decrease mean corpuscular hemoglobin concentration (MCHC) should be more therapeutically effective than drugs that increase oxygen affinity.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Antidrepanocíticos/uso terapéutico , Benzaldehídos/uso terapéutico , Hemoglobina Falciforme/metabolismo , Oxígeno/metabolismo , Pirazinas/uso terapéutico , Pirazoles/uso terapéutico , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/metabolismo , Antidrepanocíticos/farmacología , Benzaldehídos/farmacología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Hemoglobina Falciforme/química , Humanos , Modelos Moleculares , Oxígeno/sangre , Pirazinas/farmacología , Pirazoles/farmacología
12.
Biophys J ; 120(12): 2543-2551, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33932439

RESUMEN

An oxygen-affinity-modifying drug, voxelotor, has very recently been approved by the FDA for treatment of sickle cell disease. The proposed mechanism of action is by preferential binding of the drug to the R quaternary conformation, which cannot copolymerize with the T conformation to form sickle fibers. Here, we report widely different oxygen dissociation and oxygen association curves for normal blood in the presence of voxelotor and interpret the results in terms of the allosteric model of Monod, Wyman, and Changeux with the addition of drug binding. The model does remarkably well in quantitatively explaining a complex data set with just the addition of drug binding and dissociation rates for the R and T conformations. Whereas slow dissociation of the drug from R results in time-independent dissociation curves, the changing association curves result from slow dissociation of the drug from T, as well as extremely slow binding of the drug to T. By calculating true equilibrium curves from the model parameters, we show that there would be a smaller decrease in oxygen delivery from the left shift in the dissociation curve caused by drug binding if drug binding and dissociation for both R and T were rapid. Our application of the Monod, Wyman, and Changeux model demonstrates once more its enormous power in explaining many different kinds of experimental results for hemoglobin. It should also be helpful in analyzing oxygen binding and in vivo delivery in future investigations of oxygen-affinity-modifying drugs for sickle cell disease.


Asunto(s)
Anemia de Células Falciformes , Preparaciones Farmacéuticas , Regulación Alostérica , Anemia de Células Falciformes/tratamiento farmacológico , Hemoglobinas/metabolismo , Humanos , Cinética , Oxígeno , Unión Proteica
13.
J Phys Chem B ; 125(14): 3452-3467, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33724035

RESUMEN

Modern experimental kinetics of protein folding began in the early 1990s with the introduction of nanosecond laser pulses to trigger the folding reaction, providing an almost 106-fold improvement in time resolution over the stopped-flow method being employed at the time. These experiments marked the beginning of the "fast-folding" subfield that enabled investigation of the kinetics of formation of secondary structural elements and disordered loops for the first time, as well as the fastest folding proteins. When I started to work on this subject, a fast folding protein was one that folded in milliseconds. There were, moreover, no analytical theoretical models and no atomistic or coarse-grained molecular dynamics simulations to describe the mechanism. Two of the most important discoveries from my lab since then are a protein that folds in hundreds of nanoseconds, as determined from nanosecond laser temperature experiments, and the discovery that the theoretically predicted barrier crossing time is about the same for proteins that differ in folding rates by 104-fold, as determined from single molecule fluorescence measurements. We also developed what has been called the "Hückel model" of protein folding, which quantitatively explains a wide range of equilibrium and kinetic measurements. This retrospective traces the history of contributions to the "fast folding" subfield from my lab until about 3 years ago, when I left protein folding to spend the rest of my research career trying to discover an inexpensive drug for treating sickle cell disease.


Asunto(s)
Simulación de Dinámica Molecular , Pliegue de Proteína , Cinética , Proteínas , Estudios Retrospectivos
14.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33495364

RESUMEN

There has been much success recently in theoretically simulating parts of complex biological systems on the molecular level, with the goal of first-principles modeling of whole cells. However, there is the question of whether such simulations can be performed because of the enormous complexity of cells. We establish approximate equations to estimate computation times required to simulate highly simplified models of cells by either molecular dynamics calculations or by solving molecular kinetic equations. Our equations place limits on the complexity of cells that can be theoretically understood with these two methods and provide a first step in developing what can be considered biological uncertainty relations for molecular models of cells. While a molecular kinetics description of the genetically simplest bacterial cell may indeed soon be possible, neither theoretical description for a multicellular system, such as the human brain, will be possible for many decades and may never be possible even with quantum computing.


Asunto(s)
Metodologías Computacionales , Cinética , Simulación de Dinámica Molecular/normas , Teoría Cuántica , Humanos , Modelos Biológicos
15.
Proc Natl Acad Sci U S A ; 117(41): 25209-25211, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32973098

RESUMEN

To make the physics of person-to-person virus transmission from emitted droplets of oral fluid while speaking easily understood, we present simple and transparent algebraic equations that capture the essential physics of the problem. Calculations with these equations provide a straightforward way of determining whether emitted droplets remain airborne or rapidly fall to the ground, after accounting for the decrease in droplet size from water evaporation. At a relative humidity of 50%, for example, droplets with initial radii larger than about 50 µm rapidly fall to the ground, while smaller, potentially virus-containing droplets shrink in size from water evaporation and remain airborne for many minutes. Estimates of airborne virion emission rates while speaking strongly support the proposal that mouth coverings can help contain the COVID-19 pandemic.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/transmisión , Neumonía Viral/transmisión , Habla , Aerosoles , COVID-19 , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Humanos , Máscaras , Modelos Teóricos , Pandemias/prevención & control , Tamaño de la Partícula , Neumonía Viral/prevención & control , Neumonía Viral/virología , SARS-CoV-2 , Saliva/virología , Factores de Tiempo
16.
Proc Natl Acad Sci U S A ; 117(26): 15018-15027, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32527859

RESUMEN

The pathology of sickle cell disease is caused by polymerization of the abnormal hemoglobin S upon deoxygenation in the tissues to form fibers in red cells, causing them to deform and occlude the circulation. Drugs that allosterically shift the quaternary equilibrium from the polymerizing T quaternary structure to the nonpolymerizing R quaternary structure are now being developed. Here we update our understanding on the allosteric control of fiber formation at equilibrium by showing how the simplest extension of the classic quaternary two-state allosteric model of Monod, Wyman, and Changeux to include tertiary conformational changes provides a better quantitative description. We also show that if fiber formation is at equilibrium in vivo, the vast majority of cells in most tissues would contain fibers, indicating that it is unlikely that the disease would be survivable once the nonpolymerizing fetal hemoglobin has been replaced by adult hemoglobin S at about 1 y after birth. Calculations of sickling times, based on a recently discovered universal relation between the delay time prior to fiber formation and supersaturation, show that in vivo fiber formation is very far from equilibrium. Our analysis indicates that patients survive because the delay period allows the majority of cells to escape the small vessels of the tissues before fibers form. The enormous sensitivity of the duration of the delay period to intracellular hemoglobin composition also explains why sickle trait, the heterozygous condition, and the compound heterozygous condition of hemoglobin S with pancellular hereditary persistence of fetal hemoglobin are both relatively benign conditions.


Asunto(s)
Anemia de Células Falciformes/metabolismo , Hemoglobina Falciforme/química , Oxígeno/metabolismo , Regulación Alostérica , Eritrocitos/química , Eritrocitos/metabolismo , Hemoglobina Fetal/química , Hemoglobina Fetal/metabolismo , Hemoglobina Falciforme/metabolismo , Humanos , Cinética , Oxígeno/química
18.
Am J Hematol ; 95(2): 205-211, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31763707

RESUMEN

70 years ago, Linus Pauling, the legendary genius of 20th century chemistry, published his famous work on the molecular cause of sickle cell disease, a paper that gave birth to what is now called molecular medicine. In this paper, Pauling left important questions unanswered that have motivated an enormous amount of scientific and clinical research since then. This retrospective discusses the basic science studies that have answered those questions directly related to the kinetics and thermodynamics of hemoglobin S polymerization.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Falciforme , Polimerizacion , Anemia de Células Falciformes/historia , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/patología , Hemoglobina Falciforme/historia , Hemoglobina Falciforme/metabolismo , Historia del Siglo XX , Humanos , Publicaciones Periódicas como Asunto/historia
19.
Bioconjug Chem ; 30(3): 568-571, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30794381

RESUMEN

The pathophysiology associated with sickle cell disease (SCD) includes hemolytic anemia, vaso-occlusive events, and ultimately end organ damage set off by the polymerization of deoxygenated hemoglobin S (HbS) into long fibers and sickling of red blood cells (RBCs). One approach toward mitigating HbS polymerization is to pharmacologically stabilize the oxygenated (R) conformation of HbS and thereby reduce sickling frequency and SCD pathology. GBT440 is an α-subunit-specific modifying agent that has recently been reported to increase HbS oxygen binding affinity and consequently delay in vitro polymerization. In addition, animal model studies have demonstrated the potential for GBT440 to be a suitable therapeutic for daily oral dosing in humans. Here, we report an optimized method for detecting GBT440 intermediates in human patient hemolysate using a combination of HPLC and mass spectrometry analysis. First, oxygen dissociation curves (ODCs) analyzed from patient blood showed that oxygen affinity increased in a dose dependent manner. Second, HPLC and integrated mass spectrometric analysis collectively confirmed that GBT440 labeling was specific to the α N-terminus thereby ruling out other potential ligand binding sites. Finally, the results from this optimized analytical approach allowed us to detect a stable α-specific GBT440 adduct in the patient's hemolysate in a dose dependent manner. The results and methods presented in this report could therefore potentially help therapeutic monitoring of GBT440 induced oxygen affinity and reveal critical insight into the biophysical properties of GBT440 Hb complexes.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Antidrepanocíticos/farmacología , Benzaldehídos/farmacología , Hemoglobina Falciforme/metabolismo , Pirazinas/farmacología , Pirazoles/farmacología , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/patología , Antidrepanocíticos/uso terapéutico , Benzaldehídos/uso terapéutico , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Eritrocitos/patología , Hemoglobina Falciforme/química , Humanos , Simulación del Acoplamiento Molecular , Oxígeno/metabolismo , Pirazinas/uso terapéutico , Pirazoles/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...