Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 277(Pt 3): 134334, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094890

RESUMEN

Ginger, a Zingeberaceae family member, is notable for its anti-inflammatory properties. This study explores the pharmaceutical mechanisms of ginger and red palm wax co-extract, developing novel niosomal formulations for enhanced transdermal delivery. Evaluations included physical characteristics, drug loading, in vitro release, network pharmacology, molecular docking, and biocompatibility. The niosomal ginger with red palm wax gel (NGPW) exhibited non-Newtonian fluid properties. The optimized niosome formulation (cholesterol: Tween80: Span60 = 12.5: 20: 5 w/w) showed a high yield (93.23 %), high encapsulation efficiency (54.71 %), and small size (264.33 ± 5.84 nm), prolonging in vitro anti-inflammatory activity. Human skin irritation and biocompatibility tests on 1 % NGPW showed favorable cytotoxicity and hemocompatibility results (ISO10993). Network pharmacology identified potential targets, while molecular docking highlighted high affinities between gingerol and red palm wax compounds with TRPM8 and TRPV1 proteins, suggesting pain inhibition via serotonergic synapse pathways. NGPW presents a promising transdermal pain inhibitory drug delivery strategy.


Asunto(s)
Liposomas , Simulación del Acoplamiento Molecular , Zingiber officinale , Zingiber officinale/química , Humanos , Liposomas/química , Geles/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Catecoles/química , Catecoles/farmacología , Canales Catiónicos TRPV/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Liberación de Fármacos , Ceras/química , Ceras/farmacología
2.
ACS Omega ; 9(6): 6901-6911, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38371838

RESUMEN

The controlled release of cyclosporine A (CsA) microencapsulated in alginate microbeads is a novel drug delivery system for the treatment of inflammatory diseases. In this study, CsA-loaded nanospheres encapsulated in alginate microbeads were applied to evaluate their controlled release profile and anti-inflammatory activity. Initially, a controlled-release drug delivery system was created by encapsulating CsA-loaded PLGA nanospheres within alginate microbeads. CsA-loaded PLGA nanospheres had a diameter of 418.70 ± 59.08 nm, a zeta potential of -22 ± 0.57 mV, and a polydispersity index of 0.517 ± 0.010. CsA-loaded nanosphere-encapsulated alginate microbeads were stable for 37 days. After encapsulating CsA-loaded PLGA nanospheres in the alginate microbeads, 5.60% of CsA was released after 24 h, and approximately 85.90% of the drugs were diffused until day 64. The cytotoxic and anti-inflammatory properties of the CsA released from the microbeads were evaluated in vitro using a murine macrophage cell line (RAW 264.7 cells). CsA-loaded nanosphere-encapsulated alginate microbeads inhibited 39.47 ± 1.71% of nitric oxide production from the RAW 264.7 cells on day 3, whereas nanosphere-encapsulated alginate microbeads inhibited 18.45 ± 1.56% only. CsA released from CsA-loaded nanosphere-encapsulated alginate microbeads had a RAW cell viability of 82.73 ± 5.58% on day 3 compared to 87.59 ± 0.69% of nanosphere-encapsulated alginate microbeads. The efficacy of the CsA-loaded nanosphere-encapsulated alginate microbeads in protecting the immune system via a controlled drug delivery system was established through anti-inflammatory and cell viability evaluation. Based on this research, the controlled release of CsA-loaded nanosphere-encapsulated alginate microbeads provides an innovative treatment for inflammatory diseases.

3.
BMC Complement Med Ther ; 24(1): 84, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350963

RESUMEN

INTRODUCTION: Zingiber officinale extract has emerged as a compelling candidate for green synthesis of nanoparticles, offering diverse applications across medicine, cosmetics, and nutrition. This study delves into the investigation of in vitro toxicity and explores the biomedical utility of green-synthesized silver nanoparticles derived from ginger extract (GE-AgNPs). METHODS: We employed established protocols to evaluate in vitro aspects such as antioxidant capacity, anti-inflammatory potential, and biocompatibility of GE-AgNPs. Additionally, molecular docking was employed to assess their anti-lipoxygenase (anti-LOX) activity. RESULTS: Our findings highlight that the extraction of ginger extract at a pH of 6, utilizing a cosolvent blend of ethanol and ethyl acetate in a 1:1 ratio, yields heightened antioxidant capacity attributed to its rich phenolic and flavonoid content. In the context of silver nanoparticle synthesis, pH 6 extraction yields the highest quantity of nanoparticles, characterized by an average size of 32.64 ± 1.65 nm. Of particular significance, GE-AgNPs (at pH 6) demonstrated remarkable efficacy in scavenging free radicals, as evidenced by an IC50 value of 6.83 ± 0.47 µg/mL. The results from the anti-LOX experiment indicate that GE-AgNPs, at a concentration of 10 µg/mL, can inhibit LOX activity by 25%, outperforming ginger extract which inhibits LOX by 17-18%. Notably, clionasterol exhibited higher binding energy and enhanced stability (-8.9 kcal/mol) compared to nordihydroguaiaretic acid. Furthermore, a cell viability study confirmed the safety of GE-AgNPs at a concentration of 17.52 ± 7.00 µg/mL against the L929 cell line. CONCLUSION: These comprehensive findings underscore the significant biomedical advantages of GE-AgNPs and emphasize their potential incorporation into cosmetic products at a maximum concentration of 10 µg/mL.


Asunto(s)
Nanopartículas del Metal , Extractos Vegetales , Zingiber officinale , Antibacterianos/farmacología , Plata/farmacología , Plata/química , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas del Metal/química , Simulación del Acoplamiento Molecular
4.
Nanoscale Adv ; 6(5): 1467-1479, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38419876

RESUMEN

Garcinia mangostana extract (GME) has severe pharmacokinetic deficiencies and is made up of a variety of bioactive components. GME has proven its anti-Acanthamoeba effectiveness. In this investigation, a GME-loaded niosome was developed to increase its potential therapeutic efficacy. A GME-loaded niosome was prepared by encapsulation in a mixture of span60, cholesterol, and chloroform by the thin film hydration method. The vesicle size, zeta potential, percentage of entrapment efficiency, and stability of GME-loaded niosomes were investigated. The values for GME-loaded niosome size and zeta potential were 404.23 ± 4.59 and -32.03 ± 0.95, respectively. The delivery system enhanced the anti-Acanthamoeba activity, which possessed MIC values of 0.25-4 mg mL-1. In addition, the niosomal formulation decreased the toxicity of GME by 16 times. GME-loaded niosome must be stored at 4 °C, as the quantity of remaining GME encapsulated is greater at this temperature than at room temperature. SEM revealed the damage to the cell membrane caused by trophozoites and cysts, which led to dead cells. In light of the above, it was found that GME-loaded niosomes had better anti-Acanthamoeba activity. The study suggested that GME-loaded niosomes could be used as an alternative to Acanthamoeba's therapeutic effects.

5.
J Mech Behav Biomed Mater ; 151: 106339, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38184930

RESUMEN

Polycaprolactone (PCL) and carboxymethyl cellulose (CMC) are two materials with beneficial properties for wound healing applications. Here, the simple preparation of PCL/CMC polymer films via the crosslinking method was demonstrated for the first time. The polymer films represented the suitable properties of liquid absorption and tensile strength to be used as a wound dressing. The blend polymer films can also load the vancomycin, which prolongs the drug release for effectiveness against S. aureus. The trifluoroethanol showed less toxicity in comparison with other crosslinking agents. This process can also be applied further in other medical devices and wound healing applications.


Asunto(s)
Carboximetilcelulosa de Sodio , Poliésteres , Vancomicina , Vancomicina/farmacología , Polímeros , Staphylococcus aureus , Antibacterianos/farmacología , Vendajes
6.
PeerJ ; 11: e15590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529215

RESUMEN

The biosynthesis of nanoparticles using the green route is an effective strategy in nanotechnology that provides a cost-effective and environmentally friendly alternative to physical and chemical methods. This study aims to prepare an aqueous extract of Ocimum sanctum (O. sanctum)-based silver nanoparticles (AgNPs) through the green route and test their antibacterial activity. The biosynthesized silver nanoparticles were characterised by colour change, UV spectrometric analysis, FTIR, and particle shape and size morphology by SEM and TEM images. The nanoparticles are almost spherical to oval or rod-shaped with smooth surfaces and have a mean particle size in the range of 55 nm with a zeta potential of -2.7 mV. The antibacterial activities of AgNPs evaluated against clinically isolated multidrug-resistant Acinetobacter baumannii (A. baumannii) showed that the AgNPs from O. sanctum are effective in inhibiting A. baumannii growth with a zone of inhibition of 15 mm in the agar well diffusion method and MIC and MBC of 32 µg/mL and 64 µg/mL, respectively. The SEM images of A. baumannii treated with AgNPs revealed damage and rupture in bacterial cells. The time-killing assay by spectrophotometry revealed the time- and dose-dependent killing action of AgNPs against A. baumannii, and the assay at various concentrations and time intervals indicated a statistically significant result in comparison with the positive control colistin at 2 µg/mL (P < 0.05). The cytotoxicity test using the MTT assay protocol showed that prepared nanoparticles of O. sanctum are less toxic against human cell A549. This study opens up a ray of hope to explore the further research in this area and to improve the antimicrobial activities against multidrug resistant bacteria.


Asunto(s)
Acinetobacter baumannii , Acinetobacter calcoaceticus , Nanopartículas del Metal , Humanos , Nanopartículas del Metal/uso terapéutico , Plata/farmacología , Ocimum sanctum , Antibacterianos/farmacología
7.
Exp Biol Med (Maywood) ; 248(6): 481-491, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36814413

RESUMEN

The most suitable method to treat hydrocephalus disease is to insert a shunt catheter that drains the cerebral spinal fluid (CSF); however, shunt implantation is often associated with various bacterial infections. In this study, antibiotic-loaded nanospheres were prepared using the solvent evaporation technique and coated on an antibiotic-impregnated shunt surface to promote shunt antibacterial properties. Clindamycin (CDM) and rifampicin (RIF) were in combination loaded in a single nanosphere, whereas trimethoprim (TMP) was loaded individually in triblock copolymers [(d,l-lactide-random-ε-caprolactone)-block-poly(ethylene glycol)-block-(d,l-lactide-random-ε-caprolactone)] (PLEC). The drug-loading content, encapsulation efficiency, yield, size, and zeta potential of the antibiotic-loaded nanospheres were measured. The results showed that the drug-loading content of clindamycin- and rifampicin-loaded nanospheres (CDM/RIF-NPs) was approximately 3% and 8%, respectively, at a drug to polymer ratio of 1:2. In addition, trimethoprim-loaded nanospheres (TMP-NPs) showed nearly 7% drug loading at equal drug and polymer ratios. The amount of drug release was determined before and after the coating of nanospheres on the shunt surface. In addition, in silico molecular docking studies indicated the good chemical interaction of these antibiotics with PLEC, and the results were consistent with those of impregnation studies. Antibacterial tests of coated external ventricular drainage showed antibacterial activity for up to 21 days.


Asunto(s)
Antibacterianos , Rifampin , Antibacterianos/farmacología , Rifampin/farmacología , Simulación del Acoplamiento Molecular , Clindamicina/farmacología , Polímeros , Trimetoprim/farmacología , Catéteres
8.
BMC Complement Med Ther ; 23(1): 25, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717857

RESUMEN

INTRODUCTION: Bioactive compounds from traditional medicines are good alternatives to standard diabetes therapies and may lead to new therapeutic discoveries. The stems of Bauhinia strychnifolia Craib. (BC) have a possible antihyperglycemic effect; However, the extraction of astilbin from BC has never been recorded in alpha-glucosidase inhibitory activities. METHODS: Using liquid chromatography-mass spectrometry (LC-MS/MS), 32 compounds were detected in the BC extract. The screening was based on peak area. Seven compounds found. PASS recognized all seven compounds as potential alpha-glucosidase (AG) inhibitors. Astilbin and quercetin 3-rhamnoside were the most likely inhibitors of AG. Arguslab, AutoDock, and AutoDock Vina investigated the binding of the two compounds and AG. The binding stability was confirmed by molecular dynamics (MD). In addition, the optimum solvent extraction was studied via CosmoQuick, and extracts were examined with 1H-NMR prior to testing with AG. RESULTS: All three software programs demonstrated that both compounds inhibit AG more effectively than acarbose. According to the sigma profile, THF is recommended for astilbin extraction. The BC extract with THF showed outstanding AG inhibitory action with an IC50 of 158 ± 1.30 µg mL-1, which was much lower than that of the positive control acarbose (IC50 = 190 ± 6.97 µg mL-1). In addition, astilbin from BC was found to inhibit AG strongly, IC50 = 22.51 ± 0.70 µg mL-1 through the extraction method of large-scale astilbin with THF has the best extraction capacity compared to other solvents, hence the initial stage of extraction employs THF to extract and precipitate them with ethyl acetate and water. CONCLUSION: In silico and in vitro studies reveal that astilbin inhibits AG and is superior to acarbose, validating its promise as an AG inhibitor. Overall, astilbin was the most bioactive component of BC for antidiabetic action.


Asunto(s)
Bauhinia , Bauhinia/metabolismo , alfa-Glucosidasas/metabolismo , Extractos Vegetales/química , Acarbosa , Cromatografía Liquida , Espectrometría de Masas en Tándem , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química
9.
Heliyon ; 8(12): e12032, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36506386

RESUMEN

Most modern wound dressings assist the wound-healing process. In contrast, conventional wound dressings have limited antibacterial activity and promote sporadic fibroblast growth. Therefore, wound dressings with prolonged substance release must be improved. This research aimed to develop hydrogel films. These were synthesized from alginate and pectin, incorporated with mangosteen extract (ME), and encapsulated in niosomes (ME-loaded niosomes). Subsequently, we examined the in vitro release and physical characteristics of ME-loaded niosomes. These characteristics included particle pH, size, charge, polydispersity index (PDI), and drug loading properties. These properties included drug loading content (DLC), entrapment efficiency (EE), and yield (Y). Additionally, we examined the swelling ratio and biological characteristics of the hydrogel film. These characteristics included antibacterial activity, cytotoxicity (L929), cell attachment to the tested materials, cell migration, hemocompatibility, and in vivo irritation. Significant results were obtained using a 2:1 niosome preparation containing Span60 and cholesterol. Ratio influenced size, charge, PDI, DLC, EE, and Y. The results were 225.5 ± 5.83 nm, negatively charged, 0.38, 16.2 ± 0.87%, 64.8 ± 3.49%, and 87.3 ± 3.09%, respectively. Additionally, the release of encapsulated ME was pH sensitive because 85% of the ME can be released at a pH of 5.5 within seven days and decrease to 70% at a pH of 7.4. The maximum swelling ratios of patches with 0.5% and 1% Ca2+ crosslinking were 867 wt% and 1,025 wt%, respectively, after 30 min. These results suggested that a medium dose (15 mg) of niosomal ME incorporated in a hydrogel film provided better bacterial inhibition, cell migration, and cell adhesion in an in vitro model. Additionally, no toxicity was observed in the fibroblasts and red blood cells. Therefore, given the above-mentioned advantages, this product can be a promising candidate for wound dressing applications.

10.
Molecules ; 27(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36234875

RESUMEN

Acanthamoeba species are capable of causing amoebic keratitis (AK). As a monotherapy, alpha-mangostin is effective for the treatment of AK; however, its bioavailability is quite poor. Moreover, the efficacy of therapy is contingent on the parasite and virulent strains. To improve readiness against AK, it is necessary to find other derivatives with accurate target identification. Beta-tubulin (BT) has been used as a target for anti-Acanthamoeba (A. keratitis). In this work, therefore, a model of the BT protein of A. keratitis was constructed by homology modeling utilizing the amino acid sequence from NCBI (GenBank: JQ417907.1). Ramachandran Plot was responsible for validating the protein PDB. The verified BT PDB was used for docking with the specified ligand. Based on an improved docking score compared to alpha-mangostin (AM), two modified compounds were identified: 1,6-dihydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C1) and 1,6-dihydroxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C2). In addition, molecular dynamics simulations were conducted to analyze the interaction characteristics of the two bound BT-new compound complexes. During simulations, the TRP9, ARG50, VAL52, and GLN122 residues of BT-C1 that align to the identical residues in BT-AM generate consistent hydrogen bond interactions with 0-3 and 0-2. However, the BT-C2 complex has a different binding site, TYR 258, ILE 281, and SER 302, and can form more hydrogen bonds in the range 0-4. Therefore, this study reveals that C1 and C2 inhibit BT as an additive or synergistic effect; however, further in vitro and in vivo studies are needed.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba , Queratitis por Acanthamoeba/parasitología , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Tubulina (Proteína) , Xantonas
11.
Artículo en Inglés | MEDLINE | ID: mdl-36267084

RESUMEN

Natural polymer-based hydrogel films possess considerable potential for use in biomedical applications and are excellent for wound healing. The purpose of this research was to use ionic crosslinking to improve the mechanical characteristics, absorption of fluid in the wound, and drug release behavior of Cassia alata L. (CA) extract loaded niosomes (CANs) that were incorporated in an alginate-pectin film (A/P). Then, chemically crosslinked A/P hydrogels were obtained by immersing them in different concentrations of calcium chloride (CaCl2) (0.5-1% w/v) for 15-120 s. The degree of crosslinking was controlled by both contact time and CaCl2 concentration. The optimal crosslinking conditions were 1% CaCl2 for 15 seconds. In this study, the following features of the hydrogel films were investigated: physical properties, morphological characteristics, drug loading, in vitro drug release, antibacterial activity, wound healing activity, cytocompatibility profiles, and hemocompatibility. The crosslinked hydrogel films maintained their physical integrity during use, with the 1% film attaining the best results in the shortest period (15 sec). Then, in vitro drug release from the films was examined. Crosslinking was observed to prolong the release of the CA extract from the hydrogel film. Finally, a cell viability experiment was conducted to evaluate the cytotoxicity profile. The A/P composite film exhibited excellent wound dressing qualities and good mechanical properties in preformulation testing. The in vitro drug release profile indicated that the A/P created a regulated drug release profile, and the cell viability experiment revealed that the film was nontoxic and hemocompatible. A/P composite films can be produced using CAN extract as a possible wound dressing. However, further studies in animals and humans are required to determine both safety and effectiveness.

12.
Saudi J Biol Sci ; 29(9): 103389, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35935103

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), is a new coronavirus strain that was first reported in December 2019 in Wuhan, China. A specific treatment for COVID-19 has yet to be identified. Potential therapeutic targets include SARS-CoV-2 main protease (Mpro) and the SARS-CoV-2 spike-ACE2 interaction. Molecular docking, molecular dynamics (MD), solvent screening for the extraction of the specified compounds, and prediction of the drug properties of certain molecules were the methods used in this study to investigate compounds from the medicinal plant Myristica fragrans, which is one of twelve herbs in Prasachandaeng remedy (PSD). ArgusLab, AutoDock Vina, and AutoDock were used to perform docking tasks. The examined ligands were compared with panduratin A as a standard (Kanjanasirirat et al., 2020), which is a promising medicinal plant molecule for the treatment of COVID-19. Molecular docking revealed that malabaricones B and C and licarins A, B and C bound to SARS-CoV-2/ACE2 and SARS-CoV-2 Mpro with low binding energies compared to that of the standard ligand. Furthermore, appropriate solvent usage is important. Acetone was selected by COSMOquick software for compound extraction in this investigation because it can extract large amounts of all five of the abovementioned M. fragrans compounds. Furthermore, the drug-like properties of these compounds were studied utilizing the Lipinski, Veber, and Ghose criteria. The results revealed that these M. fragrans compounds have potential as effective medicines to combat the COVID-19 pandemic. However, to assess the therapeutic potential of these ligands, additional research is needed, which will use our findings as a foundation.

13.
Plants (Basel) ; 11(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35890469

RESUMEN

PCSK9 is a promising target for developing novel cholesterol-lowering drugs. We developed a recipe that combined molecular docking, GC-MS/MS, and real-time PCR to identify potential PCSK9 inhibitors for herb ratio determination. Three herbs, Carthamus tinctorius, Coscinium fenestratum, and Zingiber officinale, were used in this study. This work aimed to evaluate cholesterol-lowering through a PCSK9 inhibitory mechanism of these three herbs for defining a suitable ratio. Chemical constituents were identified using GC-MS/MS. The PCSK9 inhibitory potential of the compounds was determined using molecular docking, real-time PCR, and Oil red O staining. It has been shown that most of the active compounds of C. fenestratum and Z. officinale inhibit PCSK9 when extracted with water, and C. fenestratum has been shown to yield tetraacetyl-d-xylonic nitrile (27.92%) and inositol, 1-deoxy-(24.89%). These compounds could inhibit PCSK9 through the binding of 6 and 5 hydrogen bonds, respectively, while the active compound in Z. officinale is 2-Formyl-9-[.beta.-d-ribofuranosyl] hypoxanthine (4.37%) inhibits PCSK9 by forming 8 hydrogen bonds. These results suggest that a recipe comprising three parts C. fenestratum, two parts Z. officinale, and one part C. tinctorius is a suitable herbal ratio for reducing lipid levels in the bloodstream through a PCSK9 inhibitory mechanism.

14.
Heliyon ; 7(9): e08078, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34632145

RESUMEN

The number of patients with type 2 diabetes mellitus (T2DM) has increased worldwide. Although an instant cure was achieved with the standard treatment acabose, unsatisfactory symptoms associated with cardiovascular disease after acabose administration have been reported. Therefore, it is important to explore new treatments. A Thai folk recipe has long been used for T2DM treatment, and it effectively decreases blood glucose. However, the mechanism of this recipe has never been proven. Therefore, the potential anti-T2DM effect of this recipe, which is used in Thai hospitals, was determined to involve alpha-glucosidase (AG) inhibition with a half maximal inhibitory concentration (IC50). In vitro experiments showed that crude Cinnamomum verum extract (IC50 = 0.35 ± 0.12 mg/mL) offered excellent inhibitory activity, followed by extracts from Tinospora crispa (IC50 = 0.69 ± 0.39 mg/mL), Stephania suberosa (IC50 = 1.50 ± 0.17 mg/mL), Andrographis paniculate (IC50 = 1.78 ± 0.35 mg/mL), and Thunbergia laurifolia (IC50 = 4.66 ± 0.27 mg/mL). However, the potencies of these extracts were lower than that of acabose (IC50 = 0.55 ± 0.11 mg/mL). Therefore, this study investigated and developed a formulation of this recipe using computational docking. Among 61 compounds, 7 effectively inhibited AG, including chlorogenic acid (IC50 = 819.07 pM) through 5 hydrogen bonds (HBs) and 2 hydrophobic interactions (HIs); ß-sitosterol (IC50 = 4.46 nM, 6 HIs); ergosterol peroxide (IC50 = 4.18 nM, 6 HIs); borapetoside D (IC50 = 508.63 pM, 7 HBs and 2 HIs); borapetoside A (IC50 = 1.09 nM, 2 HBs and 2 His), stephasubimine (IC50 = 285.37 pM, 6 HIs); and stephasubine (IC50 = 1.09 nM, 3 HBs and 4 HIs). These compounds bind with high affinity to different binding pockets, leading to additive effects. Moreover, the pharmacokinetics of six of these seven compounds (except ergosterol peroxide) showed poor absorption in the gastrointestinal tract, which would allow for competitive binding to AG in the small intestine. These results indicate that the development of these 6 compounds into oral antidiabetic agents is promising.

15.
Artículo en Inglés | MEDLINE | ID: mdl-34135981

RESUMEN

MUC-30 is a hydrophobic compound which is active against the MCF-7 cancer cell line. In this study, MUC-30 was loaded in polymeric micelles to improve the water solubility and release rate. For prolonged MUC-30 release, MUC-30 was encapsulated in polymeric micelles using PEG-b-PLA and PEG-b-PCL as materials. Micelles prepared with 1 : 9 w per w ratios by film hydration achieved the highest entrapment efficiency (EE%). The EE% of MUC-30-loaded PEG-b-PCL micelles was approximately 30% greater than that of PEG-b-PLA micelles, due to the different H-bond formations between MUC-30 and the polymer membrane (PCL, 4; PLA, 3). The cytotoxic activity of MUC-30 against EGFR theoretically presented 399.31 nM (IC50 = 282.26 ng/mL) by molecular docking. In vitro cytotoxic activity of MUC-30 was confirmed by MTT assay. MUC-30 (IC50 = 11 ± 0.39 ng/mL) showed three-fold higher activity over MUC-30-loaded PEG-b-PLA micelles (IC50 = 37 ± 1.18 ng/mL) and two-fold higher over PEG-b-PCL micelles (IC50 = 75 ± 3.97 ng/mL). This was due to the higher release rate of MUC-30 from PEG-b-PLA micelles compared to PEG-b-PCL micelles. Therefore, MUC-30-loaded PEG-b-PLA micelles could be a promising candidate for breast cancer chemotherapy.

16.
Chem Pharm Bull (Tokyo) ; 65(6): 530-537, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28566645

RESUMEN

RSPP050 (AG50) is one of the semi-synthetic andrographolide that is isolated from Andrographis paniculata NEES (Acanthaceae). The anti-proliferation effects of AG50 against cholangiocarcinoma (HuCCT1) were displayed high cytotoxicity. Unfortunately, poor water solubility of AG50 limited its clinical applications. This study aimed to increase the concentration of AG50 in water and drug loading and release study in phosphate-buffered saline (PBS) in the absence/presence of pig liver esterase enzyme. Cytotoxicity of AG50-loaded polymeric micelles was evaluated against HuCCT1. AG50 loaded micelles were prepared by film sonication and encapsulated by polymers including poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-b-PCL) or poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-b-PLA). Micelle properties were characterized such as solubility, drug loading, drug release and in vitro cytotoxicity against HuCTT1. AG50 was successfully loaded into both types of polymeric micelles. The best drug-polymer (D/P) ratio was 1 : 9. AG50/PCL and AG50/PLA-micelles had small particle size (36.4±5.1, 49.0±2.7 nm, respectively) and high yield (58.2±1.8, 58.8±2.9, respectively). AG50/PLA-micelles (IC50=2.42 µg/mL) showed higher cytotoxicity against HuCCT1 than AG50/PCL-micelles (IC50=4.40 µg/mL) due to the higher amount of AG50 released. Nanoencapsulation of AG50 could provide a promising development in clinical use for cholangiocarcinoma treatment.


Asunto(s)
Lactatos/química , Lactonas/química , Micelas , Polietilenglicoles/química , Animales , Línea Celular Tumoral , Humanos , Técnicas In Vitro , Solubilidad , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA