Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38885044

RESUMEN

We report herein the synthesis of three detergents bearing a perfluorinated cyclohexyl group connected through a short, hydrogenated spacer (i.e., propyl, butyl, or pentyl) to a ß-maltoside polar head that are, respectively, called FCymal-3, FCymal-4, and FCymal-5. Increasing the length of the spacer decreased the critical micellar concentration (CMC), as demonstrated by surface tension (SFT) and isothermal titration calorimetry (ITC), from 5 mM for FCymal-3 to 0.7 mM for FCymal-5. The morphology of the micelles was studied by dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and small-angle X-ray scattering (SAXS), indicating heterogeneous rod-like shapes. While micelles of FCymal-3 and -4 have similar hydrodynamic diameters of ∼10 nm, those of FCymal-5 were twice as large. We also investigated the ability of the detergents to solubilize lipid membranes made of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC). Molecular modeling indicated that the FCymal detergents generate disorder in lipid bilayers, with FCymal-3 being inserted more deeply into bilayers than FCymal-4 and -5. This was experimentally confirmed using POPC vesicles that were completely solubilized within 2 h with FCymal-3, whereas FCymal-5 required >8 h. A similar trend was noticed for the direct extraction of membrane proteins from E. coli membranes, with FCymal-3 being more potent than FCymal-5. An opposite trend was observed in terms of stabilization of the two model membrane proteins bacteriorhodopsin (bR) and SpNOX. In all three FCymal detergents, bR was stable for at least 2 months with no signs of aggregation. However, while the structural integrity of bR was fully preserved in FCymal-4 and -5, minor bleaching was observed in FCymal-3. Similarly, SpNOX exhibited the least activity in FCymal-3 and the highest activity in FCymal-5. By combining solubilizing and stabilizing potency, FCymal detergents push forward our expectations of the usefulness of fluorinated detergents for handling and investigating membrane proteins.

2.
iScience ; 27(2): 108792, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38299112

RESUMEN

Due to their ability to recognize carbohydrate structures, lectins emerged as potential receptors for bacterial lipopolysaccharides (LPS). Despite growing interest in investigating the association between host receptor lectins and exogenous glycan ligands, the molecular mechanisms underlying bacterial recognition by human lectins are still not fully understood. We contributed to fill this gap by unveiling the molecular basis of the interaction between the lipooligosaccharide of Escherichia coli and the dendritic cell-specific intracellular adhesion molecules (ICAM)-3 grabbing non-integrin (DC-SIGN). Specifically, a combination of different techniques, including fluorescence microscopy, surface plasmon resonance, NMR spectroscopy, and computational studies, demonstrated that DC-SIGN binds to the purified deacylated R1 lipooligosaccharide mainly through the recognition of its outer core pentasaccharide, which acts as a crosslinker between two different tetrameric units of DC-SIGN. Our results contribute to a better understanding of DC-SIGN-LPS interaction and may support the development of pharmacological and immunostimulatory strategies for bacterial infections, prevention, and therapy.

3.
ACS Cent Sci ; 9(4): 709-718, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37122470

RESUMEN

The C-type lectin receptor DC-SIGN has been highlighted as the coreceptor for the spike protein of the SARS-CoV-2 virus. A multivalent glycomimetic ligand, Polyman26, has been found to inhibit DC-SIGN-dependent trans-infection of SARS-CoV-2. The molecular details underlying avidity generation in such systems remain poorly characterized. In an effort to dissect the contribution of the known multivalent effects - chelation, clustering, and statistical rebinding - we studied a series of dendrimer constructs related to Polyman26 with a rod core rationally designed to engage simultaneously two binding sites of the tetrameric DC-SIGN. Binding properties of these compounds have been studied with a range of biophysical techniques, including recently developed surface plasmon resonance oriented-surface methodology. Using molecular modeling we addressed, for the first time, the impact of the carbohydrate recognition domains' flexibility of the DC-SIGN tetramer on the compounds' avidity. We were able to gain deeper insight into the role of different binding modes, which in combination produce a construct with a nanomolar affinity despite a limited valency. This multifaceted experimental-theoretical approach provides detailed understanding of multivalent ligand/multimeric protein interactions which can lead to future predictions. This work opens the way to the development of new virus attachment blockers adapted to different C-type lectin receptors of viruses.

4.
Eur Biophys J ; 52(4-5): 367-377, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37106255

RESUMEN

Recombinant adeno-associated virus virus-derived vectors (rAAVs) are among the most used viral delivery system for in vivo gene therapies with a good safety profile. However, rAAV production methods often lead to a heterogeneous vector population, in particular with the presence of undesired empty particles. Analytical ultracentrifugation sedimentation velocity (AUC-SV) is considered as the gold analytical technique allowing the measurement of relative amounts of each vector subpopulation and components like particle aggregates, based on their sedimentation coefficients. This letter presents the principle and practice of AUC experiments for rAAVs characterization. We discuss our results in the framework of previously published works. In addition to classical detection at 260 nm, using interference optics in the ultracentrifuge can provide an independent estimate of weight percentages of the different populations of capsids, and of the genome size incorporated in rAAV particles.


Asunto(s)
Dependovirus , Vectores Genéticos , Dependovirus/genética , Terapia Genética , Ultracentrifugación/métodos
5.
Biochimie ; 205: 40-52, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36375632

RESUMEN

We report herein the synthesis of zwitterionic sulfobetaine (SB) and dimethylamine oxide (AO) detergents whose alkyl chain is made of either a perfluorohexyl (F6H3) or a perfluoropentyl (F5H5) group linked to a hydrogenated spacer arm. In aqueous solution, the critical micellar concentrations (CMCs) measured by surface tensiometry (SFT) and isothermal titration calorimetry (ITC) were found in the millimolar range (1.3-2.4 mM). The morphologies of the aggregates were evaluated by dynamic light scattering (DLS), analytical ultracentrifugation (AUC), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM), demonstrating that the two perfluoropentyl derivatives formed small micelles less than 10 nm in diameter, whereas the perfluorohexyl derivatives formed larger and more heterogeneous micelles. The two SB detergents were able to solubilize synthetic lipid vesicles in a few hours; by contrast, the perfluoropentyl AO induced much faster solubilization, whereas the perfluorohexyl AO did not show any solubilization. All detergents were tested for their abilities to stabilize three membrane proteins, namely, bacteriorhodopsin (bR), the Bacillus subtilis ABC transporter BmrA, and the Streptococcus pneumoniae enzyme SpNOX. The SB detergents outperformed the AO derivatives as well as their hydrogenated analogs in stabilizing these proteins. Among the four new compounds, F5H5SB combines many desirable properties for membrane-protein study, as it is a powerful yet gentle detergent.


Asunto(s)
Detergentes , Micelas , Detergentes/química , Proteínas de la Membrana/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
6.
J Mol Biol ; 434(9): 167541, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292347

RESUMEN

ABC ("ATP-Binding Cassette") transporters of the type IV subfamily consist of exporters involved in the efflux of many compounds, notably those capable to confer multidrug resistance like the mammalian P-glycoprotein or the bacterial transporter BmrA. They function according to an alternating access mechanism between inward-facing (IF) and outward-facing (OF) conformations, but the extent of physical separation between the two nucleotide-binding domains (NBDs) in different states is still unsettled. Small Angle Neutron Scattering and hydrogen/deuterium exchange coupled to mass spectrometry were used to highlight different conformational states of BmrA during its ATPase cycle. In particular, mutation of the conserved Lysine residue of the Walker-A motif (K380A) captures BmrA in an ATP-bound IF conformation prior to NBD closure. While in the transition-like state induced by vanadate wild-type BmrA is mainly in an OF conformation, the transporter populates only IF conformations in either the apo state or in the presence of ADP/Mg. Importantly, in this post-hydrolytic step, distances between the two NBDs of BmrA seem to be more separated than in the apo state, but they remain shorter than the widest opening found in the related MsbA transporter. Overall, our results highlight the main steps of the catalytic cycle of a homodimeric bacterial multidrug transporter and underline structural and functional commonalities as well as oddities among the type IV subfamily of ABC transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Farmacorresistencia Bacteriana Múltiple , Genes MDR , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Catálisis , Conformación Proteica
7.
Mol Pharm ; 19(1): 235-245, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34927439

RESUMEN

Alterations in glycosylation cause the emergence of tumor-associated carbohydrate antigens (TACAs) during tumorigenesis. Truncation of O-glycans reveals the Thomsen nouveau (Tn) antigen, an N-acetylgalactosamine (GalNAc) frequently attached to serine or threonine amino acids, that is accessible on the surface of cancer cells but not on healthy cells. Interestingly, GalNac can be recognized by macrophage galactose lectin (MGL), a type C lectin receptor expressed in immune cells. In this study, recombinant MGL fragments were tested in vitro for their cancer cell-targeting efficiency by flow cytometry and confocal microscopy and in vivo after administration of fluorescent MGL to tumor-bearing mice. Our results demonstrate the ability of MGL to target Tn-positive human tumors without inducing toxicity. This outcome makes MGL, a fragment of a normal human protein, the first vector candidate for in vivo diagnosis and imaging of human tumors and, possibly, for therapeutic applications.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Lectinas Tipo C/metabolismo , Células A549 , Animales , Femenino , Citometría de Flujo , Células HT29 , Humanos , Ratones , Ratones Desnudos , Microscopía Confocal , Trasplante de Neoplasias , Proteínas Recombinantes , Esferoides Celulares , Resonancia por Plasmón de Superficie
8.
ACS Omega ; 6(38): 24397-24406, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34604622

RESUMEN

We report herein the synthesis of a series of fluorinated surfactants with a glucose moiety as a polar head group and whose alkyl chain was varied in length and in fluorine/hydrogen ratio. They were synthesized in two or four steps in 20 to 50% overall yields allowing gram-scale synthesis. Their solubility in water is between 0.2 and 13.8 g/L, which indicates low water solubility. Two derivatives of the series were found to form micelles in water at ∼11 mM. Their hydrophilic-lipophilic balance was determined both by Griffin's and Davies' methods; they may exhibit a "harsh" character toward membrane proteins. This, combined with their low water solubility, suggest that they could advantageously be used in detergent mixtures containing a "mild" detergent. Finally, the potency of one of the derivatives, F3H5-ß-Glu, to act as an additive for the crystallization of AcrB was evaluated in detergent mixtures with n-dodecyl-ß-d-maltopyranoside (DDM). Among the six crystallization conditions investigated, adding F3H5-ß-Glu improved the crystallization for three of them, as compared to control drops without additives. Moreover, preliminary tests with other compounds of the series showed that none of them hampered crystallization and suggested improvement for three of them. These novel glucose-based fluorinated detergents should be regarded as potential additives that could be included in screening kits used in crystallization.

9.
Eur Biophys J ; 50(3-4): 313-330, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33792745

RESUMEN

Biophysical quantification of protein interactions is central to unveil the molecular mechanisms of cellular processes. Researchers can choose from a wide panel of biophysical methods that quantify molecular interactions in different ways, including both classical and more novel techniques. We report the outcome of an ARBRE-MOBIEU training school held in June 2019 in Gif-sur-Yvette, France ( https://mosbio.sciencesconf.org/ ). Twenty European students benefited from a week's training with theoretical and practical sessions in six complementary approaches: (1) analytical ultracentrifugation with or without a fluorescence detector system (AUC-FDS), (2) isothermal titration calorimetry (ITC), (3) size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), (4) bio-layer interferometry (BLI), (5) microscale thermophoresis (MST) and, (6) switchSENSE. They implemented all these methods on two examples of macromolecular interactions with nanomolar affinity: first, a protein-protein interaction between an artificial alphaRep binder, and its target protein, also an alphaRep; second, a protein-DNA interaction between a DNA repair complex, Ku70/Ku80 (hereafter called Ku), and its cognate DNA ligand. We report the approaches used to analyze the two systems under study and thereby showcase application of each of the six techniques. The workshop provided students with improved understanding of the advantages and limitations of different methods, enabling future choices concerning approaches that are most relevant or informative for specific kinds of sample and interaction.


Asunto(s)
Sustancias Macromoleculares/análisis , Calorimetría , ADN , Humanos , Ligandos , Proteínas
11.
Langmuir ; 37(6): 2111-2122, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33539092

RESUMEN

Two new surfactants, F5OM and F5DM, were designed as partially fluorinated analogues of n-dodecyl-ß-D-maltoside (DDM). The micellization properties and the morphologies of the aggregates formed by the two surfactants in water and phosphate buffer were evaluated by NMR spectroscopy, surface tension measurement, isothermal titration calorimetry, dynamic light scattering, small-angle X-ray scattering, and analytical ultracentrifugation. As expected, the critical micellar concentration (cmc) was found to decrease with chain length of the fluorinated tail from 2.1-2.5 mM for F5OM to 0.3-0.5 mM for F5DM, and micellization was mainly entropy-driven at 25 °C. Close to their respective cmc, the micelle sizes were similar for both surfactants, that is, 7 and 13 nm for F5OM and F5DM, respectively, and both increased with concentration forming 4 nm diameter rods with maximum dimensions of 50 and 70 nm, respectively, at a surfactant concentration of ∼30 mM. The surfactants were found to readily solubilize lipid vesicles and extract membrane proteins directly from Escherichia coli membranes. They were found more efficient than the commercial fluorinated detergent F6H2OM over a broad range of concentrations (1-10 mM) and even better than DDM at low concentrations (1-5 mM). When transferred into the two new surfactants, the thermal stability of the proteins bacteriorhodopsin (bR) and FhuA was higher than in the presence of their solubilization detergents and similar to that in DDM; furthermore, bR was stable over several months. The membrane enzymes SpNOX and BmrA were not as active as in DDM micelles but similarly active as in F6OM. Together, these findings indicate both extracting and stabilizing properties of the new maltose-based fluorinated surfactants, making them promising tools in MP applications.


Asunto(s)
Maltosa , Tensoactivos , Proteínas de la Membrana , Micelas , Tensión Superficial
12.
Eur Biophys J ; 50(3-4): 501-512, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33398461

RESUMEN

Fep1 is an iron-responsive GATA-type transcriptional repressor present in numerous fungi. The DNA-binding domain of this protein is characterized by the presence of two zinc fingers of the Cys2-Cys2 type and a Cys-X5-Cys-X8-Cys-X2-Cys motif located between the two zinc fingers, that is involved in binding of a [2Fe-2S] cluster. In this work, biophysical characterization of the DNA-binding domain of Pichia pastoris Fep1 and of the complex of the protein with cognate DNA has been undertaken. The results obtained by analytical ultracentrifugation sedimentation velocity, small-angle X-ray scattering and differential scanning calorimetry indicate that Fep1 is a natively unstructured protein that is able to bind DNA forming 1:1 and 2:1 complexes more compact than the individual partners. Complex formation takes place independently of the presence of a stoichiometric [2Fe-2S] cluster, suggesting that the cluster may play a role in recruiting other protein(s) required for regulation of transcription in response to changes in intracellular iron levels.


Asunto(s)
ADN/química , Factores de Transcripción GATA , Hierro , Saccharomycetales , Factores de Transcripción
13.
Methods Mol Biol ; 2247: 155-171, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33301117

RESUMEN

Sedimentation velocity analytical ultracentrifugation is a powerful and versatile tool for the characterization of proteins and macromolecular complexes in solution. The direct modeling of the sedimentation process using modern computational strategies allows among others to assess the homogeneity/heterogeneity state of protein samples and to characterize protein associations. In this chapter, we will provide theoretical backgrounds and protocols to analyze the size distribution of protein samples and to determine the affinity of protein-protein hetero-associations.


Asunto(s)
Fenómenos Biofísicos , Técnicas Biosensibles , Proteínas/química , Algoritmos , Análisis de Datos , Modelos Teóricos , Unión Proteica , Temperatura , Ultracentrifugación/métodos
14.
Biophys J ; 119(3): 605-618, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32668232

RESUMEN

Small angle neutron scattering (SANS) provides a method to obtain important low-resolution information for integral membrane proteins (IMPs), challenging targets for structural determination. Specific deuteration furnishes a "stealth" carrier for the solubilized IMP. We used SANS to determine a structural envelope of SpNOX, the Streptococcus pneumoniae NADPH oxidase (NOX), a prokaryotic model system for exploring structure and function of eukaryotic NOXes. SpNOX was solubilized in the detergent lauryl maltose neopentyl glycol, which provides optimal SpNOX stability and activity. Using deuterated solvent and protein, the lauryl maltose neopentyl glycol was experimentally undetected in SANS. This affords a cost-effective SANS approach for obtaining novel structural information on IMPs. Combining SANS data with molecular modeling provided a first, to our knowledge, structural characterization of an entire NOX enzyme. It revealed a distinctly less compact structure than that predicted from the docking of homologous crystal structures of the separate transmembrane and dehydrogenase domains, consistent with a flexible linker connecting the two domains.


Asunto(s)
NADPH Oxidasas , Difracción de Neutrones , Proteínas de la Membrana , Oxidación-Reducción , Dispersión del Ángulo Pequeño
15.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722514

RESUMEN

C-type lectin receptor (CLR)/carbohydrate recognition occurs through low affinity interactions. Nature compensates that weakness by multivalent display of the lectin carbohydrate recognition domain (CRD) at the cell surface. Mimicking these low affinity interactions in vitro is essential to better understand CLR/glycan interactions. Here, we present a strategy to create a generic construct with a tetrameric presentation of the CRD for any CLR, termed TETRALEC. We applied our strategy to a naturally occurring tetrameric CRD, DC-SIGNR, and compared the TETRALEC ligand binding capacity by synthetic N- and O-glycans microarray using three different DC-SIGNR constructs i) its natural tetrameric counterpart, ii) the monomeric CRD and iii) a dimeric Fc-CRD fusion. DC-SIGNR TETRALEC construct showed a similar binding profile to that of its natural tetrameric counterpart. However, differences observed in recognition of low affinity ligands underlined the importance of the CRD spatial arrangement. Moreover, we further extended the applications of DC-SIGNR TETRALEC to evaluate CLR/pathogens interactions. This construct was able to recognize heat-killed Candida albicans by flow cytometry and confocal microscopy, a so far unreported specificity of DC-SIGNR. In summary, the newly developed DC-SIGNR TETRALEC tool proved to be useful to unravel novel CLR/glycan interactions, an approach which could be applied to other CLRs.


Asunto(s)
Candida albicans/metabolismo , Citometría de Flujo , Fragmentos Fc de Inmunoglobulinas/química , Lectinas Tipo C/química , Proteínas Recombinantes de Fusión/química , Candida albicans/citología , Fragmentos Fc de Inmunoglobulinas/genética , Lectinas Tipo C/genética , Ligandos , Proteínas Recombinantes de Fusión/genética
16.
Methods Mol Biol ; 2168: 147-175, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33582991

RESUMEN

Small angle neutron scattering (SANS) is a powerful tool for studying the structure of solubilized membrane proteins. It allows describing the general dimension of the membrane protein , evidence conformational changes, and may provide a low-resolution structure at the nm resolution range. This is because SANS can discriminate between the membrane protein and its amphiphilic partner by specific deuteration of the partners and of the buffer. This chapter was written to offer to a scientist aiming to describe a membrane protein structure the basic tools to consider a SANS experiment. It presents the general principle of contrast variation and a bibliographic survey of experimental strategies used for membrane proteins, some basic theoretical background, and a succinct description of the principles of analysis, of the instrumental and sample requirement, and of the practical steps, prior to the experiments, during the experiments and for data analysis.


Asunto(s)
Detergentes/química , Medición de Intercambio de Deuterio/métodos , Proteínas de la Membrana/análisis , Proteínas de la Membrana/química , Difracción de Neutrones/métodos , Dispersión del Ángulo Pequeño , Humanos
17.
Chemistry ; 25(64): 14659-14668, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31469191

RESUMEN

Chemical modification of pseudo-dimannoside ligands guided by fragment-based design allowed for the exploitation of an ammonium-binding region in the vicinity of the mannose-binding site of DC-SIGN, leading to the synthesis of a glycomimetic antagonist (compound 16) of unprecedented affinity and selectivity against the related lectin langerin. Here, the computational design of pseudo-dimannoside derivatives as DC-SIGN ligands, their synthesis, their evaluation as DC-SIGN selective antagonists, the biophysical characterization of the DC-SIGN/16 complex, and the structural basis for the ligand activity are presented. On the way to the characterization of this ligand, an unusual bridging interaction within the crystals shed light on the plasticity and potential secondary binding sites within the DC-SIGN carbohydrate recognition domain.

18.
Biochemistry ; 58(30): 3314-3324, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31264408

RESUMEN

Peptidoglycan is one of the major components of the bacterial cell wall, being responsible for shape and stability. Due to its essential nature, its biosynthetic pathway is the target for major antibiotics, and proteins involved in its biosynthesis continue to be targeted for inhibitor studies. The biosynthesis of its major building block, Lipid II, is initiated in the bacterial cytoplasm with the sequential reactions catalyzed by Mur enzymes, which have been suggested to form a multiprotein complex to facilitate shuttling of the building blocks toward the inner membrane. In this work, we purified MurC, MurD, MurE, MurF, and MurG from the human pathogen Streptococcus pneumoniae and characterized their interactions using chemical cross-linking, mass spectrometry, analytical ultracentrifugation, and microscale thermophoresis. Mur ligases interact strongly as binary complexes, with interaction regions mapping mostly to loop regions. Interestingly, MurC, MurD, and MurE display 10-fold higher affinity for each other than for MurF and MurG, suggesting that Mur ligases that catalyze the initial reactions in the peptidoglycan biosynthesis pathway could form a subcomplex that could be important to facilitate Lipid II biosynthesis. The interface between Mur proteins could represent a yet unexplored target for new inhibitor studies that could lead to the development of novel antimicrobials.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Humanos , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Streptococcus pneumoniae/genética
19.
Structure ; 27(8): 1270-1285.e6, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31178221

RESUMEN

In its unliganded form, the retinoic acid receptor (RAR) in heterodimer with the retinoid X receptor (RXR) exerts a strong repressive activity facilitated by the recruitment of transcriptional corepressors in the promoter region of target genes. By integrating complementary structural, biophysical, and computational information, we demonstrate that intrinsic disorder is a required feature for the precise regulation of RAR activity. We show that structural dynamics of RAR and RXR H12 regions is an essential mechanism for RAR regulation. Unexpectedly we found that, while mainly disordered, the corepressor N-CoR presents evolutionary conserved structured regions involved in transient intramolecular contacts. In the presence of RXR/RAR, N-CoR exploits its multivalency to form a cooperative multisite complex that displays equilibrium between different conformational states that can be tuned by cognate ligands and receptor mutations. This equilibrium is key to preserving the repressive basal state while allowing the conversion to a transcriptionally active form.


Asunto(s)
Co-Represor 1 de Receptor Nuclear/genética , Receptor alfa de Ácido Retinoico/química , Receptor alfa de Ácido Retinoico/metabolismo , Receptores X Retinoide/química , Receptores X Retinoide/metabolismo , Animales , Células COS , Chlorocebus aethiops , Evolución Molecular , Regulación de la Expresión Génica , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Co-Represor 1 de Receptor Nuclear/química , Co-Represor 1 de Receptor Nuclear/metabolismo , Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína , Estructura Secundaria de Proteína
20.
Sci Rep ; 9(1): 4656, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30874582

RESUMEN

Peptidoglycan is a major component of the bacterial cell wall and thus a major determinant of cell shape. Its biosynthesis is initiated by several sequential reactions catalyzed by cytoplasmic Mur enzymes. Mur ligases (MurC, -D, -E, and -F) are essential for bacteria, metabolize molecules not present in eukaryotes, and are structurally and biochemically tractable. However, although many Mur inhibitors have been developed, few have shown promising antibacterial activity, prompting the hypothesis that within the cytoplasm, Mur enzymes could exist as a complex whose architecture limits access of small molecules to their active sites. This suggestion is supported by the observation that in many bacteria, mur genes are present in a single operon, and pairs of these genes often are fused to generate a single polypeptide. Here, we explored this genetic arrangement in the human pathogen Bordetella pertussis and show that MurE and MurF are expressed as a single, bifunctional protein. EM, small angle X-ray scattering (SAXS), and analytical centrifugation (AUC) revealed that the MurE-MurF fusion displays an elongated, flexible structure that can dimerize. Moreover, MurE-MurF interacted with the peripheral glycosyltransferase MurG, which formed discrete oligomers resembling 4- or 5-armed stars in EM images. The oligomeric structure of MurG may allow it to play a bona fide scaffolding role for a potential Mur complex, facilitating the efficient conveyance of peptidoglycan-building blocks toward the inner membrane leaflet. Our findings shed light on the structural determinants of a peptidoglycan formation complex involving Mur enzymes in bacterial cell wall formation.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/fisiología , Proteínas Bacterianas/metabolismo , Sitios de Unión/fisiología , Bordetella pertussis/patogenicidad , Dominio Catalítico/fisiología , Pared Celular/metabolismo , Citoplasma/metabolismo , Glicosiltransferasas/metabolismo , Glicosiltransferasas/fisiología , Humanos , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/fisiología , Péptido Sintasas/metabolismo , Peptidoglicano/biosíntesis , Peptidoglicano/metabolismo , Unión Proteica/fisiología , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...