Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(1): e202310983, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37857582

RESUMEN

The development of potent adjuvants is an important step for improving the performance of subunit vaccines. CD1d agonists, such as the prototypical α-galactosyl ceramide (α-GalCer), are of special interest due to their ability to activate iNKT cells and trigger rapid dendritic cell maturation and B-cell activation. Herein, we introduce a novel derivatization hotspot at the α-GalCer skeleton, namely the N-substituent at the amide bond. The multicomponent diversification of this previously unexplored glycolipid chemotype space permitted the introduction of a variety of extra functionalities that can either potentiate the adjuvant properties or serve as handles for further conjugation to antigens toward the development of self-adjuvanting vaccines. This strategy led to the discovery of compounds eliciting enhanced antigen-specific T cell stimulation and a higher antibody response when delivered by either the parenteral or the mucosal route, as compared to a known potent CD1d agonist. Notably, various functionalized α-GalCer analogues showed a more potent adjuvant effect after intranasal immunization than a PEGylated α-GalCer analogue previously optimized for this purpose. Ultimately, this work could open multiple avenues of opportunity for the use of mucosal vaccines against microbial infections.


Asunto(s)
Células T Asesinas Naturales , Vacunas , Adyuvantes Inmunológicos/farmacología , Galactosilceramidas/farmacología , Galactosilceramidas/química
2.
Vaccine X ; 14: 100330, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37361051

RESUMEN

Glaesserella parasuis is a Gram-negative bacterium that colonizes the upper airways of swine, capable of causing a systemic infection called Glässer's disease. This disease is more frequent in young post-weaning piglets. Current treatments against G. parasuis infection are based on the use of antimicrobials or inactivated vaccines, which promote limited cross-protection against different serovars. For this reason, there is an interest in developing novel subunit vaccines with the capacity to confer effective protection against different virulent strains. Herein, we characterize the immunogenicity and the potential benefits of neonatal immunization with two different vaccine formulations based on the F4 polypeptide, a conserved immunogenic protein fragment from the virulence-associated trimeric autotransporters of virulent G. parasuis strains. With this purpose, we immunized two groups of piglets with F4 combined with cationic adjuvant CAF®01 or cyclic dinucleotide CDA. Piglets immunized with a commercial bacterin and non-immunized animals served as control groups. The vaccinated piglets received two doses of vaccine, at 14 days old and 21 days later. The immune response induced against the F4 polypeptide varied depending on the adjuvant used. Piglets vaccinated with the F4+CDA vaccine developed specific anti-F4 IgGs, biased towards the induction of IgG1 responses, whereas no anti-F4 IgGs were de novo induced after immunization with the CAF®01 vaccine. Piglets immunized with both formulations displayed balanced memory T-cell responses, evidenced upon in vitro re-stimulation of peripheral blood mononuclear cells with F4. Interestingly, pigs immunized with F4+CAF®01 controlled more efficiently a natural nasal colonization by a virulent serovar 4 G. parasuis that spontaneously occurred during the experimental procedure. According to the results, the immunogenicity and the protection afforded by F4 depend on the adjuvant used. F4 may represent a candidate to consider for a Glässer's disease vaccine and could contribute to a better understanding of the mechanisms involved in protection against virulent G. parasuis colonization.

3.
Pharmaceutics ; 15(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37111723

RESUMEN

The most successful medical intervention for preventing infectious diseases is still vaccination. This effective strategy has resulted in decreased mortality and extended life expectancy. However, there is still a critical need for novel vaccination strategies and vaccines. Antigen cargo delivery by nanoparticle-based carriers could promote superior protection against constantly emerging viruses and subsequent diseases. This should be sustained by the induction of vigorous cellular and humoral immunity, capable of acting both at the systemic and mucosal levels. Induction of antigen-specific responses at the portal of entry of pathogens is considered an important scientific challenge. Chitosan, which is widely regarded as a biodegradable, biocompatible and non-toxic material for functionalized nanocarriers, as well as having adjuvant activity, enables antigen administration via less-invasive mucosal routes such as sublingual or pulmonic application route. In this proof of principle study, we evaluate the efficacy of chitosan nanocarriers loaded with the model antigen Ovalbumin (OVA) co-administrated with the STING agonist bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) given by pulmonary route. Here, BALB/c mice were immunized with four doses of the formulation that stimulates enhanced antigen-specific IgG titers in sera. In addition, this vaccine formulation also promotes a strong Th1/Th17 response characterized by high secretion of IFN-γ, IL-2 and IL-17, as well as induction of CD8+ T cells. Furthermore, the novel formulation exhibited strong dose-sparing capacity, enabling a 90% reduction of the antigen concentration. Altogether, our results suggest that chitosan nanocarriers, in combination with the mucosal adjuvant c-di-AMP, are a promising technology platform for the development of innovative mucosal vaccines against respiratory pathogens (e.g., Influenza or RSV) or for therapeutic vaccines.

4.
Pharmaceutics ; 15(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36986773

RESUMEN

Current influenza vaccines target highly variable surface glycoproteins; thus, mismatches between vaccine strains and circulating strains often diminish vaccine protection. For this reason, there is still a critical need to develop effective influenza vaccines able to protect also against the drift and shift of different variants of influenza viruses. It has been demonstrated that influenza nucleoprotein (NP) is a strong candidate for a universal vaccine, which contributes to providing cross-protection in animal models. In this study, we developed an adjuvanted mucosal vaccine using the recombinant NP (rNP) and the TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxyl-poly-ethylene-glycol (BPPcysMPEG). The vaccine efficacy was compared with that observed following parenteral vaccination of mice with the same formulation. Mice vaccinated with 2 doses of rNP alone or co-administered with BPPcysMPEG by the intranasal (i.n.) route showed enhanced antigen-specific humoral and cellular responses. Moreover, NP-specific humoral immune responses, characterized by significant NP-specific IgG and IgG subclass titers in sera and NP-specific IgA titers in mucosal territories, were remarkably increased in mice vaccinated with the adjuvanted formulation as compared with those of the non-adjuvanted vaccination group. The addition of BPPcysMPEG also improved NP-specific cellular responses in vaccinated mice, characterized by robust lymphoproliferation and mixed Th1/Th2/Th17 immune profiles. Finally, it is notable that the immune responses elicited by the novel formulation administered by the i.n. route were able to confer protection against the influenza H1N1 A/Puerto Rico/8/1934 virus.

5.
Nanomedicine ; 49: 102655, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36681171

RESUMEN

Herein, we provide the first description of a synthetic delivery method for self-replicating replicon RNAs (RepRNA) derived from classical swine fever virus (CSFV) using a Coatsome-replicon vehicle based on Coatsome® SS technologies. This results in an unprecedented efficacy when compared to well-established polyplexes, with up to ∼65 fold-increase of the synthesis of RepRNA-encoded gene of interest (GOI). We demonstrated the efficacy of such Coatsome-replicon vehicles for RepRNA-mediated induction of CD8 T-cell responses in mice. Moreover, we provide new insights on physical properties of the RepRNA, showing that the removal of all CSFV structural protein genes has a positive effect on the translation of the GOI. Finally, we successfully engineered RepRNA constructs encoding a porcine reproductive and respiratory syndrome virus (PRRSV) antigen, providing an example of antigen expression with potential application to combat viral diseases. The versatility and simplicity of modifying and manufacturing these Coatsome-replicon vehicle formulations represents a major asset to tackle foreseeable emerging pandemics.


Asunto(s)
Enfermedades Transmisibles , ARN , Porcinos , Ratones , Animales , ARN/genética , Antígenos , Enfermedades Transmisibles/genética , Replicón/genética
6.
Pharmaceutics ; 14(12)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36559314

RESUMEN

Among cyclic di-nucleotides (CDN), both cyclic di-AMP (CDA) and di-GMP (CDG) are promising adjuvants and immune modulators. These molecules are not only able to induce profuse antibody production but also predominant T helper 1 and cytotoxic CD8 T lymphocytes (CTL) responses, which enable their use for vaccination against intracellular pathogens as well as in cancer immunotherapy. However, for their successful translation into the clinic, a comprehensive understanding of CDN mode of action is still essential. Consistent with evidence in the literature, we show here that IFN-α/ß (Type I IFN) is crucial for CDG-mediated B cell activation. We recently determined the key role of type I IFN signaling for CDA-mediated enhancement of immunogenicity. Based on the biological activities of type I IFN, in this study, we hypothesized that it might also be required for CTL induction by CDG. We disclose here the mode of action of type I IFN signaling in CDG-mediated cross-presentation and subsequent CTL generation.

8.
PLoS Pathog ; 18(1): e1010219, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025971

RESUMEN

Excessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously. We evaluated effects of endogenous itaconate and exogenous application of itaconate and its variants dimethyl- and 4-octyl-itaconate (DI, 4OI) on host responses to influenza A virus (IAV). Infection induced expression of ACOD1, the enzyme catalyzing itaconate synthesis, in monocytes and macrophages, which correlated with viral replication and was abrogated by DI and 4OI treatment. In IAV-infected mice, pulmonary inflammation and weight loss were greater in Acod1-/- than in wild-type mice, and DI treatment reduced pulmonary inflammation and mortality. The compounds reversed infection-triggered interferon responses and modulated inflammation in human cells supporting non-productive and productive infection, in peripheral blood mononuclear cells, and in human lung tissue. All three itaconates reduced ROS levels and STAT1 phosphorylation, whereas AKT phosphorylation was reduced by 4OI and DI but increased by itaconate. Single-cell RNA sequencing identified monocytes as the main target of infection and the exclusive source of ACOD1 mRNA in peripheral blood. DI treatment silenced IFN-responses predominantly in monocytes, but also in lymphocytes and natural killer cells. Ectopic synthesis of itaconate in A549 cells, which do not physiologically express ACOD1, reduced infection-driven inflammation, and DI reduced IAV- and IFNγ-induced CXCL10 expression in murine macrophages independent of the presence of endogenous ACOD1. The compounds differed greatly in their effects on cellular gene homeostasis and released cytokines/chemokines, but all three markedly reduced release of the pro-inflammatory chemokines CXCL10 (IP-10) and CCL2 (MCP-1). Viral replication did not increase under treatment despite the dramatically repressed IFN responses. In fact, 4OI strongly inhibited viral transcription in peripheral blood mononuclear cells, and the compounds reduced viral titers (4OI>Ita>DI) in A549 cells whereas viral transcription was unaffected. Taken together, these results reveal itaconates as immunomodulatory and antiviral interventions for influenza virus infection.


Asunto(s)
Virus de la Influenza A/inmunología , Macrófagos/inmunología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Succinatos/farmacología , Células A549 , Animales , Carboxiliasas/deficiencia , Carboxiliasas/inmunología , Citocinas/genética , Citocinas/inmunología , Humanos , Macrófagos/virología , Ratones , Ratones Noqueados , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Células THP-1
9.
Cell Mol Immunol ; 19(2): 234-244, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34992275

RESUMEN

Global pandemics caused by influenza or coronaviruses cause severe disruptions to public health and lead to high morbidity and mortality. There remains a medical need for vaccines against these pathogens. CMV (cytomegalovirus) is a ß-herpesvirus that induces uniquely robust immune responses in which remarkably large populations of antigen-specific CD8+ T cells are maintained for a lifetime. Hence, CMV has been proposed and investigated as a novel vaccine vector for expressing antigenic peptides or proteins to elicit protective cellular immune responses against numerous pathogens. We generated two recombinant murine CMV (MCMV) vaccine vectors expressing hemagglutinin (HA) of influenza A virus (MCMVHA) or the spike protein of severe acute respiratory syndrome coronavirus 2 (MCMVS). A single injection of MCMVs expressing either viral protein induced potent neutralizing antibody responses, which strengthened over time. Importantly, MCMVHA-vaccinated mice were protected from illness following challenge with the influenza virus, and we excluded that this protection was due to the effects of memory T cells. Conclusively, we show here that MCMV vectors induce not only long-term cellular immunity but also humoral responses that provide long-term immune protection against clinically relevant respiratory pathogens.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Humoral , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/virología , Chlorocebus aethiops , Citomegalovirus/inmunología , Perros , Femenino , Células HEK293 , Humanos , Inmunidad Celular , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/virología , Células Vero
10.
Vaccines (Basel) ; 9(7)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34358167

RESUMEN

This study aimed to evaluate the immune response and protection correlates against influenza virus (IV) infection in pigs vaccinated with the novel NG34 HA1 vaccine candidate adjuvanted with either CAF®01 or CDA/αGalCerMPEG (αGCM). Two groups of six pigs each were vaccinated intramuscularly twice with either NG34 + CAF®01 or NG34 + CDA/αGCM. As controls, groups of animals (n = 6 or 4) either non-vaccinated or vaccinated with human seasonal trivalent influenza vaccine or NG34 + Freund's adjuvant were included in the study. All animal groups were challenged with the 2009 pandemic (pdm09) strain of H1N1 (total amount of 7 × 106 TCID50/mL) via intranasal and endotracheal routes 21 days after second vaccination. Reduced consolidated lung lesions were observed both on days three and seven post-challenge in the animals vaccinated with NG34 + CAF®01, whereas higher variability with relatively more severe lesions in pigs of the NG34 + CDA/αGCM group on day three post-infection. Among groups, animals vaccinated with NG34 + CDA/αGCM showed higher viral loads in the lung at seven days post infection whereas animals from NG34 + CAF®01 completely abolished virus from the lower respiratory tract. Similarly, higher IFNγ secretion and stronger IgG responses against the NG34 peptide in sera was observed in animals from the NG34 + CAF®01 group as compared to the NG34 + CDA/αGCM. NG34-vaccinated pigs with adjuvanted CAF®01 or CDA/αGCM combinations resulted in different immune responses as well as outcomes in pathology and viral shedding.

11.
Vaccines (Basel) ; 9(6)2021 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-34204170

RESUMEN

Chlamydia trachomatis is the most frequent sexually-transmitted disease-causing bacterium. Urogenital serovars of this intracellular pathogen lead to urethritis and cervicitis. Ascending infections result in pelvic inflammatory disease, salpingitis, and oophoritis. One of 200 urogenital infections leads to tubal infertility. Serovars A-C cause trachoma with visual impairment. There is an urgent need for a vaccine. We characterized a new five-component subunit vaccine in a mouse vaccination-lung challenge infection model. Four recombinant Pmp family-members and Ctad1 from C. trachomatis serovar E, all of which participate in adhesion and binding of chlamydial elementary bodies to host cells, were combined with the mucosal adjuvant cyclic-di-adenosine monophosphate. Intranasal application led to a high degree of cross-serovar protection against urogenital and ocular strains of C. trachomatis, which lasted at least five months. Critical evaluated parameters were body weight, clinical score, chlamydial load, a granulocyte marker and the cytokines IFN-γ/TNF-α in lung homogenate. Vaccine antigen-specific antibodies and a mixed Th1/Th2/Th17 T cell response with multi-functional CD4+ and CD8+ T cells correlate with protection. However, serum-transfer did not protect the recipients suggesting that circulating antibodies play only a minor role. In the long run, our new vaccine might help to prevent the feared consequences of human C. trachomatis infections.

12.
Immunology ; 164(1): 173-189, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33964011

RESUMEN

Multiple pathogen-associated molecular patterns (PAMPs) on a pathogen's surface imply their simultaneous recognition by the host cell membrane-located multiple PAMP-specific Toll-like receptors (TLRs). The TLRs on endosomes recognize internalized pathogen-derived nucleic acids and trigger anti-pathogen immune responses aimed at eliminating the intracellular pathogen. Whether the TLRs influence each other's expression and effector responses-termed TLR interdependency-remains unknown. Herein, we first probed the existence of TLR interdependencies and next determined how targeting TLR interdependencies might determine the outcome of Leishmania infection. We observed that TLRs selectively altered expression of their own and of other TLRs revealing novel TLR interdependencies. Leishmania major-an intra-macrophage parasite inflicting the disease cutaneous leishmaniasis in 88 countries-altered this TLR interdependency unfolding a unique immune evasion mechanism. We targeted this TLR interdependency by selective silencing of rationally chosen TLRs and by stimulation with selective TLR ligands working out a novel phase-specific treatment regimen. Targeting the TLR interdependency elicited a host-protective anti-leishmanial immune response and reduced parasite burden. To test whether this observation could be used as a scientific rationale for treating a potentially fatal L. donovani infection, which causes visceral leishmaniasis, we targeted the inter-TLR dependency adopting the same treatment regimen. We observed reduced splenic Leishman-Donovan units accompanied by host-protective immune response in susceptible BALB/c mice. The TLR interdependency optimizes TLR-induced immune response by a novel immunoregulatory framework and scientifically rationalizes targeting TLRs in tandem and in sequence for redirecting immune responses against an intracellular pathogen.


Asunto(s)
Leishmania major/fisiología , Leishmaniasis Cutánea/inmunología , Macrófagos/inmunología , Receptores Toll-Like/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Silenciador del Gen , Interacciones Huésped-Parásitos , Humanos , Inmunomodulación , Leishmaniasis Cutánea/terapia , Ratones , Ratones Endogámicos BALB C , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , ARN Interferente Pequeño/genética , Receptor Cross-Talk , Transducción de Señal , Receptores Toll-Like/genética
13.
Metabolites ; 11(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925995

RESUMEN

Itaconate is derived from the tricarboxylic acid (TCA) cycle intermediate cis-aconitate and links innate immunity and metabolism. Its synthesis is altered in inflammation-related disorders and it therefore has potential as clinical biomarker. Mesaconate and citraconate are naturally occurring isomers of itaconate that have been linked to metabolic disorders, but their functional relationships with itaconate are unknown. We aimed to establish a sensitive high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) assay for the quantification of itaconate, mesaconate, citraconate, the pro-drug 4-octyl-itaconate, and selected TCA intermediates. The assay was validated for itaconate, mesaconate, and citraconate for intra- and interday precision and accuracy, extended stability, recovery, freeze/thaw cycles, and carry-over. The lower limit of quantification was 0.098 µM for itaconate and mesaconate and 0.049 µM for citraconate in 50 µL samples. In spike-in experiments, itaconate remained stable in human plasma and whole blood for 24 and 8 h, respectively, whereas spiked-in citraconate and mesaconate concentrations changed during incubation. The type of anticoagulant in blood collection tubes affected measured levels of selected TCA intermediates. Human plasma may contain citraconate (0.4-0.6 µM, depending on the donor), but not itaconate or mesaconate, and lipopolysaccharide stimulation of whole blood induced only itaconate. Concentrations of the three isomers differed greatly among mouse organs: Itaconate and citraconate were most abundant in lymph nodes, mesaconate in kidneys, and only citraconate occurred in brain. This assay should prove useful to quantify itaconate isomers in biomarker and pharmacokinetic studies, while providing internal controls for their effects on metabolism by allowing quantification of TCA intermediates.

14.
Pharmaceutics ; 13(2)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535570

RESUMEN

Underdeveloped immunity during the neonatal age makes this period one of the most dangerous during the human lifespan, with infection-related mortality being one of the highest of all age groups. It is also discussed that vaccination during this time window may result in tolerance rather than in productive immunity, thus raising concerns about the overall vaccine-mediated protective efficacy. Cyclic di-nucleotides (CDN) are bacterial second messengers that are rapidly sensed by the immune system as a danger signal, allowing the utilization of these molecules as potent activators of the immune response. We have previously shown that cyclic di-adenosine monophosphate (CDA) is a potent and versatile adjuvant capable of promoting humoral and cellular immunity. We characterize here the cytokine profiles elicited by CDA in neonatal cord blood in comparison with other promising neonatal adjuvants, such as the imidazoquinoline resiquimod (R848), which is a synthetic dual TLR7 and TLR8 agonist. We observed superior activity of CDA in eliciting T helper 1 (Th1) and T follicular helper (TfH) cytokines in cells from human cord blood when compared to R848. Additional in vivo studies in mice showed that neonatal priming in a three-dose vaccination schedule is beneficial when CDA is used as a vaccine adjuvant. Humoral antibody titers were significantly higher in mice that received a neonatal prime as compared to those that did not. This effect was absent when using other adjuvants that were reported as suitable for neonatal vaccination. The biological significance of this immune response was assessed by a challenge with a genetically modified influenza H1N1 PR8 virus. The obtained results confirmed that CDA performed better than any other adjuvant tested. Altogether, our results suggest that CDA is a potent adjuvant in vitro on human cord blood, and in vivo in newborn mice, and thus a suitable candidate for the development of neonatal vaccines.

15.
J Vis Exp ; (160)2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32597860

RESUMEN

fDrug research for the treatment of lung infections is progressing towards predictive in vitro models of high complexity. The multifaceted presence of bacteria in lung models can re-adapt epithelial arrangement, while immune cells coordinate an inflammatory response against the bacteria in the microenvironment. While in vivo models have been the choice for testing new anti-infectives in the context of cystic fibrosis, they still do not accurately mimic the in vivo conditions of such diseases in humans and the treatment outcomes. Complex in vitro models of the infected airways based on human cells (bronchial epithelial and macrophages) and relevant pathogens could bridge this gap and facilitate the translation of new anti-infectives into the clinic. For such purposes, a co-culture model of the human cystic fibrosis bronchial epithelial cell line CFBE41o- and THP-1 monocyte-derived macrophages has been established, mimicking an infection of the human bronchial mucosa by P. aeruginosa at air-liquid interface (ALI) conditions. This model is set up in seven days, and the following parameters are simultaneously assessed: epithelial barrier integrity, macrophage transmigration, bacterial survival, and inflammation. The present protocol describes a robust and reproducible system for evaluating drug efficacy and host responses that could be relevant for discovering new anti-infectives and optimizing their aerosol delivery to the lungs.


Asunto(s)
Aire , Antiinfecciosos/farmacología , Bronquios/patología , Técnicas de Cocultivo , Células Epiteliales/microbiología , Macrófagos/microbiología , Pseudomonas aeruginosa/fisiología , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Recuento de Colonia Microbiana , Citocinas/metabolismo , Impedancia Eléctrica , Células Epiteliales/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cinética , L-Lactato Deshidrogenasa/metabolismo , Macrófagos/efectos de los fármacos , Permeabilidad , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Células THP-1 , Tobramicina/farmacología
16.
Front Immunol ; 11: 128, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153562

RESUMEN

There are several unmet needs in modern immunology. Among them, vaccines against parasitic diseases and chronic infections lead. Trypanosoma cruzi, the causative agent of Chagas disease, is an excellent example of a silent parasitic invasion that affects millions of people worldwide due to its progression into the symptomatic chronic phase of infection. In search for novel vaccine candidates, we have previously introduced Traspain, an engineered trivalent immunogen that was designed to address some of the known mechanisms of T. cruzi immune evasion. Here, we analyzed its performance in different DNA prime/protein boost protocols and characterized the systemic immune response associated with diverse levels of protection. Formulations that include a STING agonist, like c-di-AMP in the boost doses, were able to prime a Th1/Th17 immune response. Moreover, comparison between them showed that vaccines that were able to prime polyfunctional cell-mediated immunity at the CD4 and CD8 compartment enhanced protection levels in the murine model. These findings contribute to a better knowledge of the desired vaccine-elicited immunity against T. cruzi and promote the definition of a vaccine correlate of protection against the infection.


Asunto(s)
Inmunidad/inmunología , Vacunas Antiprotozoos/inmunología , Trypanosoma cruzi/inmunología , Vacunación/métodos , Animales , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos/inmunología , Citocinas/metabolismo , Femenino , Inmunización Secundaria , Masculino , Ratones , Modelos Animales , Resultado del Tratamiento
17.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32188077

RESUMEN

Although the advent of combined antiretroviral therapy has substantially improved the survival of HIV-1-infected individuals, non-AIDS-related diseases are becoming increasingly prevalent in HIV-1-infected patients. Persistent abnormalities in coagulation appear to contribute to excess risk for a broad spectrum of non-AIDS defining complications. Alterations in coagulation biology in the context of HIV infection seem to be largely a consequence of a chronically inflammatory microenvironment leading to endothelial cell (EC) dysfunction. A possible direct role of HIV-1 proteins in sustaining EC dysfunction has been postulated but not yet investigated. The HIV-1 matrix protein p17 (p17) is secreted from HIV-1-infected cells and is known to sustain inflammatory processes by activating ECs. The aim of this study was to investigate the possibility that p17-driven stimulation of human ECs is associated with increased production of critical coagulation factors. Here we show the involvement of autophagy in the p17-induced accumulation and secretion of von Willebrand factor (vWF) by ECs. In vivo experiments confirmed the capability of p17 to exert a potent pro-coagulant activity soon after its intravenous administration.


Asunto(s)
Antitrombina III/metabolismo , Autofagia/fisiología , Células Endoteliales/metabolismo , Antígenos VIH/metabolismo , Péptido Hidrolasas/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Factor de von Willebrand/metabolismo , Animales , Antirretrovirales/uso terapéutico , Femenino , Infecciones por VIH/complicaciones , VIH-1/fisiología , Humanos , Ratones
18.
Front Immunol ; 11: 622385, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584723

RESUMEN

Self-amplifying replicon RNA (RepRNA) promotes expansion of mRNA templates encoding genes of interest through their replicative nature, thus providing increased antigen payloads. RepRNA derived from the non-cytopathogenic classical swine fever virus (CSFV) targets monocytes and dendritic cells (DCs), potentially promoting prolonged antigen expression in the DCs, contrasting with cytopathogenic RepRNA. We engineered pestivirus RepRNA constructs encoding influenza virus H5N1 (A/chicken/Yamaguchi/7/2004) nucleoprotein (Rep-NP) or hemagglutinin (Rep-HA). The inherent RNase-sensitivity of RepRNA had to be circumvented to ensure efficient delivery to DCs for intracellular release and RepRNA translation; we have reported how only particular synthetic delivery vehicle formulations are appropriate. The question remained concerning RepRNA packaged in virus replicon particles (VRPs); we have now compared an efficient polyethylenimine (PEI)-based formulation (polyplex) with VRP-delivery as well as naked RepRNA co-administered with the potent bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) adjuvant. All formulations contained a Rep-HA/Rep-NP mix, to assess the breadth of both humoral and cell-mediated defences against the influenza virus antigens. Assessment employed pigs for their close immunological relationship to humans, and as natural hosts for influenza virus. Animals receiving the VRPs, as well as PEI-delivered RepRNA, displayed strong humoral and cellular responses against both HA and NP, but with VRPs proving to be more efficacious. In contrast, naked RepRNA plus c-di-AMP could induce only low-level immune responses, in one out of five pigs. In conclusion, RepRNA encoding different influenza virus antigens are efficacious for inducing both humoral and cellular immune defences in pigs. Comparisons showed that packaging within VRP remains the most efficacious for delivery leading to induction of immune defences; however, this technology necessitates employment of expensive complementing cell cultures, and VRPs do not target human cells. Therefore, choosing the appropriate synthetic delivery vehicle still offers potential for rapid vaccine design, particularly in the context of the current coronavirus pandemic.


Asunto(s)
Inmunidad Celular , Inmunidad Humoral , Vacunas contra la Influenza/inmunología , ARN Viral/inmunología , Replicón/inmunología , Animales , COVID-19 , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Pestivirus , ARN Viral/administración & dosificación , SARS-CoV-2 , Porcinos , Proteínas del Núcleo Viral/inmunología
19.
PLoS Pathog ; 15(9): e1008036, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31525249

RESUMEN

Cytomegalovirus (CMV) is a ubiquitous ß-herpesvirus that establishes life-long latent infection in a high percentage of the population worldwide. CMV induces the strongest and most durable CD8+ T cell response known in human clinical medicine. Due to its unique properties, the virus represents a promising candidate vaccine vector for the induction of persistent cellular immunity. To take advantage of this, we constructed a recombinant murine CMV (MCMV) expressing an MHC-I restricted epitope from influenza A virus (IAV) H1N1 within the immediate early 2 (ie2) gene. Only mice that were immunized intranasally (i.n.) were capable of controlling IAV infection, despite the greater potency of the intraperitoneally (i.p.) vaccination in inducing a systemic IAV-specific CD8+ T cell response. The protective capacity of the i.n. immunization was associated with its ability to induce IAV-specific tissue-resident memory CD8+ T (CD8TRM) cells in the lungs. Our data demonstrate that the protective effect exerted by the i.n. immunization was critically mediated by antigen-specific CD8+ T cells. CD8TRM cells promoted the induction of IFNγ and chemokines that facilitate the recruitment of antigen-specific CD8+ T cells to the lungs. Overall, our results showed that locally applied MCMV vectors could induce mucosal immunity at sites of entry, providing superior immune protection against respiratory infections.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunidad Mucosa , Vacunas contra la Influenza/inmunología , Muromegalovirus/inmunología , Administración Intranasal , Secuencia de Aminoácidos , Animales , Línea Celular , Quimiocinas/biosíntesis , Epítopos de Linfocito T/administración & dosificación , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Femenino , Productos del Gen env/administración & dosificación , Productos del Gen env/genética , Productos del Gen env/inmunología , Vectores Genéticos , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Gripe Humana/inmunología , Gripe Humana/prevención & control , Pulmón/inmunología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Muromegalovirus/genética , Células 3T3 NIH , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
20.
Front Immunol ; 10: 1849, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31440243

RESUMEN

Non-NK group 1 innate lymphoid cells (ILC1s), mainly investigated in the mucosal areas of the intestine, are well-known to contribute to anti-parasitic and anti-bacterial immune responses. Recently, our group revealed that lung ILC1s become activated during murine influenza infection, thereby contributing to viral clearance. In this context, worldwide seasonal influenza infections often result in severe disease outbreaks leading to high morbidity and mortality. Therefore, new immune interventions are urgently needed. In contrast to NK cells, the potential of non-NK ILC1s to become functionally tailored by immune modulators to contribute to the combat against mucosal-transmitted viral pathogens has not yet been addressed. The present study aimed at assessing the potential of ILC1s to become modulated by iNKT cells activated through the CD1d agonist αGalCerMPEG. Our results demonstrate an improved functional responsiveness of murine lung and splenic ILC1s following iNKT cell stimulation by the mucosal route, as demonstrated by enhanced surface expression of TNF-related apoptosis-inducing ligand (TRAIL), CD49a and CD28, and increased secretion of IFNγ. Interestingly, iNKT cell stimulation also induced the expression of the immune checkpoint molecules GITR and CTLA-4, which represent crucial points of action for immune regulation. An in vivo influenza infection model revealed that intranasal activation of ILC1s by αGalCerMPEG contributed to increased viral clearance as shown by reduced viral loads in the lungs. The findings that ILC1s can become modulated by mucosally activated iNKT cells in a beneficial manner emphasize their up to now underestimated potential and renders them to be considered as targets for novel immune interventions.


Asunto(s)
Inmunidad Mucosa , Virus de la Influenza A/inmunología , Células T Asesinas Naturales/inmunología , Infecciones por Orthomyxoviridae/inmunología , Animales , Antígenos de Diferenciación/inmunología , Femenino , Ratones , Ratones Noqueados , Células T Asesinas Naturales/patología , Infecciones por Orthomyxoviridae/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...