Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 670: 550-562, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38776690

RESUMEN

HYPOTHESIS: Superhydrophobic surfaces can effectively prevent the freezing of supercooled droplets in technological systems. Droplets on superhydrophobic surfaces commonly not only wet the top asperities (Cassie State), but also partially penetrate into microstructure due to surface properties, environment, and droplet impact occurring in real-world applications. Implications on ice nucleation can be expected and are little explored. It remains elusive how anti-icing surfaces can be designed to exploit intermediate wetting phenomena. EXPERIMENTS: We utilized engineered micro-/nanostructures, specifically micropillars, to modulate the wetting fraction in the microstructure. The behavior of intermediate wetting with supercooling and resulting implications on ice nucleation delay when potential nucleation sites are formed in the microcavities were investigated using experimental, theoretical, and simulation components. FINDINGS: The temperature-dependent wetting fraction in the microstructure increased at supercooled temperatures, partly activated by condensation in the microcavities. At -10/-20 °C, a critical wetting fraction led to maximum ice nucleation delays, with experimental results consistent with theoretical predictions. This critical wetting fraction minimized the effective contact area solid-to-liquid along the partially wetted microstructure. The study establishes physical relations between ice nucleation delays, geometrical surface parameters and wettability properties in the intermediate wetting regime, providing guidance for the design of ice resistant microstructured surfaces.

2.
Micromachines (Basel) ; 13(6)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35744591

RESUMEN

Glaucoma is a common, irreparable eye disease associated with high intraocular pressure. One treatment option is implantation of a stent to lower the intraocular pressure. A systematic approach to develop a microchannel stent meshwork that drains aqueous humor from the anterior chamber of the eye into the subconjunctival space is presented. The stent has a large number of outlets within its mesh structure that open into the subconjunctiva. The development approach includes a flow resistance model of the stent. Local adaption of the stent's tubular dimensions allows for adjustment of the flow resistance. In this way, an evenly distributed outflow into the subconjunctiva is achieved. We anticipate that microblebs will form at the stent outlets. Their size is crucial for drainage and control of intraocular pressure. An analytical model for bleb drainage is developed based on the porous properties of the subconjunctival tissue. Both models-the stent flow resistance model and the bleb drainage model-are verified by numerical simulation. The models and numerical simulation are used to predict intraocular pressure after surgery. They allow for a systematic and personalized design of microchannel stents. Stents designed in this way can stabilize the intraocular pressure between an upper and lower limit.

3.
Nat Nanotechnol ; 13(7): 578-582, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29784963

RESUMEN

Investigating biological and synthetic nanoscopic species in liquids, at the ultimate resolution of single entity, is important in diverse fields1-5. Progress has been made6-10, but significant barriers need to be overcome such as the need for intense fields, the lack of versatility in operating conditions and the limited functionality in solutions of high ionic strength for biological applications. Here, we demonstrate switchable electrokinetic nanovalving able to confine and guide single nano-objects, including macromolecules, with sizes down to around 10 nanometres, in a lab-on-chip environment. The nanovalves are based on spatiotemporal tailoring of the potential energy landscape of nano-objects using an electric field, modulated collaboratively by wall nanotopography and by embedded electrodes in a nanochannel system. We combine nanovalves to isolate single entities from an ensemble, and demonstrate their guiding, confining, releasing and sorting. We show on-demand motion control of single immunoglobulin G molecules, quantum dots, adenoviruses, lipid vesicles, dielectric and metallic particles, suspended in electrolytes with a broad range of ionic strengths, up to biological levels. Such systems can enable nanofluidic, large-scale integration and individual handling of multiple entities in applications ranging from single species characterization and screening to in situ chemical or biochemical synthesis in continuous on-chip processes.


Asunto(s)
Dispositivos Laboratorio en un Chip , Nanotecnología/instrumentación , Células A549 , Adenoviridae/aislamiento & purificación , Electricidad , Electrodos , Electrólitos/química , Humanos , Inmunoglobulina G/análisis , Cinética , Lípidos/análisis , Movimiento (Física) , Nanoestructuras/química
4.
Langmuir ; 31(17): 4807-21, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25346213

RESUMEN

Icing of surfaces is commonplace in nature and technology, affecting everyday life and sometimes causing catastrophic events. Understanding (and counteracting) surface icing brings with it significant scientific challenges that requires interdisciplinary knowledge from diverse scientific fields such as nucleation thermodynamics and heat transfer, fluid dynamics, surface chemistry, and surface nanoengineering. Here we discuss key aspects and findings related to the physics of ice formation on surfaces and show how such knowledge could be employed to rationally develop surfaces with extreme resistance to icing (extraordinary icephobicity). Although superhydrophobic surfaces with micro-, nano-, or (often biomimetic) hierarchical roughnesses have shown in laboratory settings (under certain conditions) excellent repellency and low adhesion to water down to temperatures near or below the freezing point, extreme icephobicity necessitates additional important functionalities. Other approaches, such as lubricant-impregnated surfaces, exhibit both advantages and serious limitations with respect to icing. In all, a clear path toward passive surfaces with extreme resistance to ice formation remains a challenge, but it is one well worth undertaking. Equally important to potential applications is scalable surface manufacturing and the ability of icephobic surfaces to perform reliably and sustainably outside the laboratory under adverse conditions. Surfaces should possess mechanical and chemical stability, and they should be thermally resilient. Such issues and related research directions are also addressed in this article.

5.
Nanoscale ; 6(9): 4874-81, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24667802

RESUMEN

Icing of surfaces is commonplace in nature, technology and everyday life, bringing with it sometimes catastrophic consequences. A rational methodology for designing materials with extraordinary resistance to ice formation and adhesion remains however elusive. We show that ultrafine roughnesses can be fabricated, so that the ice nucleation-promoting effect of nanopits on surfaces is effectively counteracted in the presence of an interfacial quasiliquid layer. The ensuing interface confinement strongly suppresses the stable formation of ice nuclei. We explain why such nanostructuring leads to the same extremely low, robust nucleation temperature of ∼-24 °C for over three orders of magnitude change in RMS size (∼0.1 to ∼100 nm). Overlaying such roughnesses on pillar-microtextures harvests the additional benefits of liquid repellency and low ice adhesion. When tested at a temperature of -21 °C, such surfaces delayed the freezing of a sessile supercooled water droplet at the same temperature by a remarkable 25 hours.

6.
Nano Lett ; 14(1): 172-82, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24320719

RESUMEN

The superhydrophobic behavior of nano- and microtextured surfaces leading to rebound of impacting droplets is of great relevance to nature and technology. It is not clear however, if and under what conditions this behavior is maintained when such surfaces are severely undercooled possibly leading to the formation of frost and icing. Here we elucidate key aspects of this phenomenon and show that the outcome of rebound or impalement on a textured surface is affected by air compression underneath the impacting drop and the time scale allowing this air to escape. Remarkably, drop impalement occurred at identical impact velocities, both at room and at very low temperatures (-30 °C) and featured a ringlike liquid meniscus penetration into the surface texture with an entrapped air bubble in the middle. At low temperatures, the drop contact time and receding dynamics of hierarchical surfaces were profoundly influenced by both an increase in the liquid viscosity due to cooling and a partial meniscus penetration into the texture. For hierarchical surfaces with the same solid fraction in their roughness, minimizing the gap between the asperities (both at micro- and nanoscales) yielded the largest resistance to millimetric drop impalement. The best performing surface impressively showed rebound at -30 °C for drop impact velocity of 2.6 m/s.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...