Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 381(2261): 20220201, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37807688

RESUMEN

The permafrost region has accumulated organic carbon in cold and waterlogged soils over thousands of years and now contains three times as much carbon as the atmosphere. Global warming is degrading permafrost with the potential to accelerate climate change as increased microbial decomposition releases soil carbon as greenhouse gases. A 19-year time series of soil and ecosystem respiration radiocarbon from Alaska provides long-term insight into changing permafrost soil carbon dynamics in a warmer world. Nine per cent of ecosystem respiration and 23% of soil respiration observations had radiocarbon values more than 50‰ lower than the atmospheric value. Furthermore, the overall trend of ecosystem and soil respiration radiocarbon values through time decreased more than atmospheric radiocarbon values did, indicating that old carbon degradation was enhanced. Boosted regression tree analyses showed that temperature and moisture environmental variables had the largest relative influence on lower radiocarbon values. This suggested that old carbon degradation was controlled by warming/permafrost thaw and soil drying together, as waterlogged soil conditions could protect soil carbon from microbial decomposition even when thawed. Overall, changing conditions increasingly favoured the release of old carbon, which is a definitive fingerprint of an accelerating feedback to climate change as a consequence of warming and permafrost destabilization. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.


Asunto(s)
Hielos Perennes , Suelo , Ecosistema , Cambio Climático , Carbono/metabolismo , Regiones Árticas
2.
Tree Physiol ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37387246

RESUMEN

Dynamics in non-structural carbohydrate (NSC) pools may underlie observed drought legacies in tree growth. We assessed how aridity influences the dynamics of different-aged NSC pools in tree sapwood at two sites with differing climate conditions ('wet' vs. 'dry') that also experienced widespread regional drought five years earlier. We used an incubation method to measure radiocarbon (Δ14C) in CO2 respired from Populus tremuloides (aspen) tree rings to evaluate NSC storage and mixing patterns, coupled with measurements of NSC (soluble sugars, starch) concentrations and respired δ13C-CO2. At a wet site, CO2 respired from rings formed during 1962-1967 was only ~ 11 years old, suggesting deep sapwood mixing of NSCs as starch. At a dry site, total NSC was about one-third of wet site totals, maximum ages in deep rings were lower, and ages more rapidly increased in shallow rings then plateaued. These results suggest historically shallower mixing and/or relatively higher consumption of NSCs under dry conditions. Both sites, however, had similar aged NSC (<1 yr) in the most recent six rings, indicative of deep radial mixing following relatively wet conditions during the sampling year. We suggest significant differences in NSC mixing among sites are driven by moisture stress, where aridity reduces NSC reserves and restricts the depth of radial mixing. However, dynamic climate conditions in the southwestern US resulted in more complex radial patterns of sapwood NSC age than previously described. We suggest a novel conceptual framework to understand how moisture variability might influence the dynamics of NSC mixing in the sapwood.

3.
Tree Physiol ; 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36738259

RESUMEN

Radiocarbon (∆14C) measurements of nonstructural carbon enable inference on the age and turnover time of stored photosynthate (e.g., sugars, starch), of which the largest pool in trees resides in the main bole. Because of potential issues with extraction-based methods, we introduce an incubation method to capture the ∆14C of nonstructural carbon via respired CO2. In this study, we compared the ∆14C obtained from these incubations with ∆14C from a well-established extraction method, using increment cores from a mature trembling aspen (Populus tremuloides). To understand any potential ∆14C disagreement, the yields from both methods were also benchmarked against the phenol-sulfuric acid concentration assay. We found incubations captured less than 100% of measured sugar and starch carbon, with recovery ranging from ~ 3% in heartwood to 85% in shallow sapwood. However, extractions universally over-yielded (mean 273 ± 101% expected sugar carbon; as high as 480%), where sugars represented less than half of extracted soluble carbon, indicating very poor specificity. While separation of soluble and insoluble nonstructural carbon is ostensibly a strength of extraction based methods, there was also evidence of poor separation of these two fractions in extractions. The ∆14C of respired CO2 and ∆14C from extractions were similar in the sapwood, while extractions resulted in comparatively higher ∆14C (older carbon) in heartwood and bark. Because yield and ∆14C discrepancies were largest in old tissues, incubations may better capture the ∆14C of nonstructural carbon that is actually metabolically available. That is, we suggest extractions include metabolically irrelevant carbon from dead tissues or cells, as well as carbon that is neither sugar nor starch. In contrast, nonstructural carbon captured by extractions must be respired to be measured. We thus suggest incubations of live tissues are a potentially viable, inexpensive, and versatile method to study the ∆14C of metabolically relevant (available) nonstructural carbon.

4.
Chem Commun (Camb) ; (6): 656-8, 2009 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-19322412

RESUMEN

The new homoleptic rare earth compound [Y(C(SiHMe(2))(3))(3)] () is prepared in 82% yield by salt metathesis of YCl(3) and 3 equivalents of [KC(SiHMe(2))(3)] (); two beta-agostic Y(H-Si) interactions are observed for each C(SiHMe(2))(3) ligand in , giving six agostic interactions per yttrium(iii) center.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...