Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7837, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570590

RESUMEN

Designing Photonic Crystal Fibers incorporating the Surface Plasmon Resonance Phenomenon (PCF-SPR) has led to numerous interesting applications. This investigation presents an exceptionally responsive surface plasmon resonance sensor, seamlessly integrated into a dual-core photonic crystal fiber, specifically designed for low refractive index (RI) detection. The integration of a plasmonic material, namely silver (Ag), externally deposited on the fiber structure, facilitates real-time monitoring of variations in the refractive index of the surrounding medium. To ensure long-term functionality and prevent oxidation, a thin layer of titanium dioxide (TiO2) covers the silver coating. To optimize the sensor, five key design parameters, including pitch, air hole diameter, and silver thickness, are fine-tuned using the Taguchi L8(25) orthogonal array. The optimal results obtained present spectral and amplitude sensitivities that reach remarkable values of 10,000 nm/RIU and 235,882 RIU-1, respectively. In addition, Artificial Neural Network (ANN) optimization techniques, specifically Multi-Layer Perceptron (MLP) and Particle Swarm Optimization (PSO), are used to predict a critical optical property of the sensor confinement loss (αloss). These predictions are derived from the same input structure parameters that are present in the full L32(25) design experiment. A genetic algorithm (GA) is then applied for optimization with the goal of maximizing the confinement loss. Our results highlight the effectiveness of training PSO artificial neural networks and demonstrate their ability to quickly and accurately predict results for unknown geometric dimensions, demonstrating their significant potential in this innovative context. The proposed sensor design can be used for various applications including pharmaceutical inspection and detection of low refractive index analytes.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37361718

RESUMEN

The performance of microfluidic biosensor of the SARS-Cov-2 was numerically analyzed through finite element method. The calculation results have been validated with comparison with experimental data reported in the literature. The novelty of this study is the use of the Taguchi method in the optimization analysis, and an L8(25) orthogonal table of five critical parameters-Reynolds number (Re), Damköhler number (Da), relative adsorption capacity (σ), equilibrium dissociation constant (KD), and Schmidt number (Sc), with two levels was designed. ANOVA methods are used to obtain the significance of key parameters. The optimal combination of the key parameters is Re = 10-2, Da = 1000, σ = 0.2, KD = 5, and Sc 104 to achieve the minimum response time (0.15). Among the selected key parameters, the relative adsorption capacity (σ) has the highest contribution (42.17%) to the reduction of the response time, while the Schmidt number (Sc) has the lowest contribution (5.19%). The presented simulation results are useful in designing microfluidic biosensors in order to reduce their response time.

3.
Eur Phys J Plus ; 138(4): 359, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37131342

RESUMEN

COVID-19 is a pandemic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus is mainly spread by droplets, respiratory secretions, and direct contact. Caused by the huge spread of the COVID-19 epidemic, research is focused on the study of biosensors as it presents a rapid solution for reducing incidents and fatality rates. In this paper, a microchip flow confinement method for the rapid transport of small sample volumes to sensor surfaces is optimized in terms of the confinement coefficient ß, the position of the confinement flow X, and its inclination α relative to the main channel. A numerical simulation based on two-dimensional Navier-Stokes equations has been used. Taguchi's L9(33) orthogonal array was adopted to design the numerical assays taking into account the confining flow parameters (α, ß, and X) on the response time of microfluidic biosensors. Analyzing the signal-to-noise ratio allowed us to determine the most effective combinations of control parameters for reducing the response time. The contribution of the control factors to the detection time was determined via analysis of variance (ANOVA). Numerical predictive models using multiple linear regression (MLR) and an artificial neural network (ANN) were developed to accurately predict microfluidic biosensor response time. This study concludes that the best combination of control factors is α 3 ß 3 X 2 that corresponds to α = 90 ∘ , ß = 25 and X = 40 µm. Analysis of variance (ANOVA) shows that the position of the confinement channel (62% contribution) is the factor most responsible for the reduction in response time. Based on the correlation coefficient (R 2), and value adjustment factor (VAF), the ANN model performed better than the MLR model in terms of prediction accuracy.

4.
Eur Phys J Plus ; 138(1): 96, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741917

RESUMEN

Microfluidic biosensors have played an important and challenging role for the rapid detection of the new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Previous studies have shown that the kinetic binding reaction of the target antigen is strongly affected by process parameters. The purpose of this research was to optimize the performance of a microfluidic biosensor using two different approaches: Taguchi optimization and artificial neural network (ANN) optimization. Taguchi L8(25) orthogonal array involving eight groups of experiments for five key parameters, which are microchannel shape, biosensor position, applied alternating current voltage, adsorption constant, and average inlet flow velocity, at two levels each, are performed to minimize the detection time of a biosensor excited by an alternating current electrothermal force. Signal to noise ratio ( S / N ) and analysis of variance were used to reach the optimal levels of process parameters and to demonstrate their percentage contributions, in terms of improved device response time. The principal results of this study showed that the Taguchi method was able to identify that the kinetic adsorption rate is the most influential parameter at 93% contribution, and the reaction surface position is the least influential parameter at 0.07% contribution. Also, the ANN model was able to accurately predict the optimal input values with a very low prediction error. Overall, the major conclusion of this study is both the Taguchi and ANN approaches can be effectively utilized to optimize the performance of a microfluidic biosensor. These advances have the potential to revolutionize the field of biosensing.

5.
Eur Phys J Plus ; 137(11): 1235, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405040

RESUMEN

In this research, Taguchi's method was employed to optimize the performance of a microfluidic biosensor with an integrated flow confinement for rapid detection of the SARS-CoV-2. The finite element method was used to solve the physical model which has been first validated by comparison with experimental results. The novelty of this study is the use of the Taguchi approach in the optimization analysis. An L 8 2 7 orthogonal array of seven critical parameters-Reynolds number (Re), Damköhler number (Da), relative adsorption capacity ( σ ), equilibrium dissociation constant (KD), Schmidt number (Sc), confinement coefficient (α) and dimensionless confinement position (X), with two levels was designed. Analysis of variance (ANOVA) methods are also used to calculate the contribution of each parameter. The optimal combination of these key parameters was Re = 10-2, Da = 1000, σ = 0.5, K D = 5, Sc = 105, α = 2 and X = 2 to achieve the lowest dimensionless response time (0.11). Among the all-optimization factors, the relative adsorption capacity ( σ ) has the highest contribution (37%) to the reduction of the response time, while the Schmidt number (Sc) has the lowest contribution (7%).

6.
Artículo en Inglés | MEDLINE | ID: mdl-35463477

RESUMEN

To combat the coronavirus disease 2019 (COVID-19), great efforts have been made by scientists around the world to improve the performance of detection devices so that they can efficiently and quickly detect the virus responsible for this disease. In this context we performed 2D finite element simulation on the kinetics of SARS-CoV-2 S protein binding reaction of a biosensor using the alternating current electrothermal (ACET) effect. The ACET flow can produce vortex patterns, thereby improving the transportation of the target analyte to the binding surface and thus enhancing the performance of the biosensor. Optimization of some design parameters concerning the microchannel height and the reaction surface, such as its length as well as its position on the top wall of the microchannel, in order to improve the biosensor efficiency, was studied. The results revealed that the detection time can be improved by 55% with an applied voltage of 10 V rms and an operating frequency of 150 kHz and that the decrease in the height of the microchannel and in the length of the binding surface can lead to an increase in the rate of the binding reaction and therefore decrease the biosensor response time. Also, moving the sensitive surface from an optimal position, located in front of the electrodes, decreases the performance of the device.

7.
Sensors (Basel) ; 21(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069780

RESUMEN

The objective of the current study is to analyze numerically the effect of the temperature-jump boundary condition on heterogeneous microfluidic immunosensors under electrothermal force. A three-dimensional simulation using the finite element method on the binding reaction kinetics of C-reactive protein (CRP) was performed. The kinetic reaction rate was calculated with coupled Laplace, Navier-Stokes, energy, and mass diffusion equations. Two types of reaction surfaces were studied: one in the form of a disc surrounded by two electrodes and the other in the form of a circular ring, one electrode is located inside the ring and the other outside. The numerical results reveal that the performance of a microfluidic biosensor is enhanced by using the second design of the sensing area (circular ring) coupled with the electrothermal force. The improvement factor under the applied ac field 15 Vrms was about 1.2 for the first geometry and 3.6 for the second geometry. Furthermore, the effect of temperature jump on heat transfer rise and response time was studied. The effect of two crucial parameters, viz. Knudsen number (Kn) and thermal accommodation coefficient (σT) with and without electrothermal effect, were analyzed for the two configurations.


Asunto(s)
Técnicas Biosensibles , Microfluídica , Calor , Inmunoensayo , Temperatura
8.
Micromachines (Basel) ; 11(9)2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878031

RESUMEN

The principal aim of this study was to analyze the effect of slip velocity at the microchannel wall on an alternating current electrothermal (ACET) flow micropump fitted with several pairs of electrodes. Using the finite element method (FEM), the coupled momentum, energy, and Poisson equations with and without slip boundary conditions have been solved to compute the velocity, temperature, and electrical field in the microchannel. The effects of the frequency and the voltage, and the electrical and thermal conductivities, respectively, of the electrolyte solution and the substrate material, have been minutely analyzed in the presence and absence of slip velocity. The slip velocity was simulated along the microchannel walls at different values of slip length. The results revealed that the slip velocity at the wall channel has a significant impact on the flow field. The existence of slip velocity at the wall increases the shear stress and therefore enhances the pumping efficiency. It was observed that higher average pumping velocity was achieved for larger slip length. When a glass substrate was used, the effect of the presence of the slip velocity was more manifest. This study shows also that the effect of slip velocity on the flow field is very important and must be taken into consideration in an ACET micropump.

9.
Biomedicines ; 5(2)2017 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-28536355

RESUMEN

Several clinical studies reveal the relationship between alterations in the topologies of the human retinal blood vessel, the outcrop and the disease evolution, such as diabetic retinopathy, hypertensive retinopathy, and macular degeneration. Indeed, the detection of these vascular changes always has gaps. In addition, the manual steps are slow, which may be subjected to a bias of the perceiver. However, we can overcome these troubles using computer algorithms that are quicker and more accurate. This paper presents and investigates a novel method for measuring the blood vessel diameter in the retinal image. The proposed method is based on a thresholding segmentation and thinning step, followed by the characteristic point determination step by the Douglas-Peucker algorithm. Thereafter, it uses the active contours to detect vessel contour. Finally, Heron's Formula is applied to assure the calculation of vessel diameter. The obtained results for six sample images showed that the proposed method generated less errors compared to other techniques, which confirms the high performance of the proposed method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA