Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 193: 106441, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378122

RESUMEN

Alzheimer's disease (AD), the most common aging-associated neurodegenerative dementia disorder, is defined by the presence of amyloid beta (Aß) and tau aggregates in the brain. However, more than half of patients also exhibit aggregates of the protein TDP-43 as a secondary pathology. The presence of TDP-43 pathology in AD is associated with increased tau neuropathology and worsened clinical outcomes in AD patients. Using C. elegans models of mixed pathology in AD, we have previously shown that TDP-43 specifically synergizes with tau but not Aß, resulting in enhanced neuronal dysfunction, selective neurodegeneration, and increased accumulation of pathological tau. However, cellular responses to co-morbid tau and TDP-43 preceding neurodegeneration have not been characterized. In this study, we evaluate transcriptomic changes at time-points preceding frank neuronal loss using a C. elegans model of tau and TDP-43 co-expression (tau-TDP-43 Tg). We find significant differential expression and exon usage in genes enriched in multiple pathways including lipid metabolism and lysosomal degradation. We note that early changes in tau-TDP-43 Tg resemble changes with tau alone, but a unique expression signature emerges during aging. We test loss-of-function mutations in a subset of tau and TDP-43 responsive genes, identifying new modifiers of neurotoxicity. Characterizing early cellular responses to tau and TDP-43 co-pathology is critical for understanding protective and pathogenic responses to mixed proteinopathies, and an important step in developing therapeutic strategies protecting against pathological tau and TDP-43 in AD.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Animales , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Péptidos beta-Amiloides/genética , Caenorhabditis elegans/genética , Tauopatías/genética , Enfermedad de Alzheimer/metabolismo , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica
2.
Proc Natl Acad Sci U S A ; 120(1): e2207250120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574656

RESUMEN

The pathological accumulation of the microtubule binding protein tau drives age-related neurodegeneration in a variety of disorders, collectively called tauopathies. In the most common tauopathy, Alzheimer's disease (AD), the accumulation of pathological tau strongly correlates with cognitive decline. The underlying molecular mechanisms that drive neurodegeneration in tauopathies remain incompletely understood and no effective disease modifying pharmacological interventions currently exist. Here, we show that tau toxicity depends on the highly conserved nuclear E3 ubiquitin ligase adaptor protein SPOP in a Caenorhabditis elegans model of tauopathy. Loss of function mutations in the C. elegans spop-1 gene significantly improves behavioral deficits in tau transgenic animals, while neuronal overexpression of SPOP-1 protein significantly worsens behavioral deficits. In addition, loss of spop-1 rescues a variety of tau-related phenotypes including the accumulation of total and phosphorylated tau protein, neurodegeneration, and shortened lifespan. Knockdown of SPOP-1's E3 ubiquitin ligase cul-3/Cullin3 does not improve tauopathy suggesting a non-degradative mechanism of action for SPOP-1. Suppression of disease-related phenotypes occurs independently of the nuclear speckle resident poly(A)-binding protein SUT-2/MSUT2. MSUT2 modifies tauopathy in mammalian neurons and in AD. Our work identifies SPOP as a novel modifier of tauopathy and a conceptual pathway for therapeutic intervention.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Caenorhabditis elegans , Tauopatías , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animales Modificados Genéticamente , Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Mamíferos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión a Poli(A)/metabolismo
3.
Front Neurosci ; 17: 1300705, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239833

RESUMEN

The nematode Caenorhabditis elegans are a powerful model system to study human disease, with numerous experimental advantages including significant genetic and cellular homology to vertebrate animals, a short lifespan, and tractable behavioral, molecular biology and imaging assays. Beginning with the identification of SOD1 as a genetic cause of amyotrophic lateral sclerosis (ALS), C. elegans have contributed to a deeper understanding of the mechanistic underpinnings of this devastating neurodegenerative disease. More recently this work has expanded to encompass models of other types of ALS and the related disease frontotemporal lobar degeneration (FTLD-TDP), including those characterized by mutation or accumulation of the proteins TDP-43, C9orf72, FUS, HnRNPA2B1, ALS2, DCTN1, CHCHD10, ELP3, TUBA4A, CAV1, UBQLN2, ATXN3, TIA1, KIF5A, VAPB, GRN, and RAB38. In this review we summarize these models and the progress and insights from the last ten years of using C. elegans to study the neurodegenerative diseases ALS and FTLD-TDP.

4.
Acta Neuropathol Commun ; 9(1): 117, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187600

RESUMEN

Several conserved nuclear RNA binding proteins (sut-1, sut-2, and parn-2) control tau aggregation and toxicity in C. elegans, mice, and human cells. MSUT2 protein normally resides in nuclear speckles, membraneless organelles composed of phase-separated RNAs and RNA-binding proteins that mediate critical steps in mRNA processing including mRNA splicing. We used human pathological tissue and transgenic mice to identify Alzheimer's disease-specific cellular changes related to nuclear speckles. We observed that nuclear speckle constituent scaffold protein SRRM2 is mislocalized and accumulates in cytoplasmic lesions in AD brain tissue. Furthermore, progression of tauopathy in transgenic mice is accompanied by increasing mislocalization of SRRM2 from the neuronal nucleus to the soma. In AD brain tissue, SRRM2 mislocalization associates with increased severity of pathological tau deposition. These findings suggest potential mechanisms by which pathological tau impacts nuclear speckle function in diverse organisms ranging from C. elegans to mice to humans. Future translational studies aimed at restoring nuclear speckle homeostasis may provide novel candidate therapeutic targets for pharmacological intervention.


Asunto(s)
Enfermedad de Alzheimer/patología , Neuronas/patología , Motas Nucleares/patología , Proteínas de Unión al ARN/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Citoplasma/metabolismo , Citoplasma/patología , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Neuronas/metabolismo , Motas Nucleares/metabolismo
5.
Geroscience ; 43(4): 1605-1614, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34032984

RESUMEN

Insoluble inclusions of phosphorylated TDP-43 occur in disease-affected neurons of most patients with amyotrophic lateral sclerosis (ALS) and about half of patients with frontotemporal lobar degeneration (FTLD-TDP). Phosphorylated TDP-43 potentiates a number of neurotoxic effects including reduced liquid-liquid phase separation dynamicity, changes in splicing, cytoplasmic mislocalization, and aggregation. Accumulating evidence suggests a balance of kinase and phosphatase activities control TDP-43 phosphorylation. Dysregulation of these processes may lead to an increase in phosphorylated TDP-43, ultimately contributing to neurotoxicity and neurodegeneration in disease. Here we summarize the evolving understanding of major regulators of TDP-43 phosphorylation as well as downstream consequences of their activities. Interventions restoring kinase and phosphatase balance may be a generalizable therapeutic strategy for all TDP-43 proteinopathies including ALS and FTLD-TDP.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Envejecimiento , Proteínas de Unión al ADN/metabolismo , Humanos , Fosforilación
6.
Acta Neuropathol Commun ; 9(1): 52, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762006

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative disease in which 97% of patients exhibit cytoplasmic aggregates containing the RNA binding protein TDP-43. Using tagged ribosome affinity purifications in Drosophila models of TDP-43 proteinopathy, we identified TDP-43 dependent translational alterations in motor neurons impacting the spliceosome, pentose phosphate and oxidative phosphorylation pathways. A subset of the mRNAs with altered ribosome association are also enriched in TDP-43 complexes suggesting that they may be direct targets. Among these, dlp mRNA, which encodes the glypican Dally like protein (Dlp)/GPC6, a wingless (Wg/Wnt) signaling regulator is insolubilized both in flies and patient tissues with TDP-43 pathology. While Dlp/GPC6 forms puncta in the Drosophila neuropil and ALS spinal cords, it is reduced at the neuromuscular synapse in flies suggesting compartment specific effects of TDP-43 proteinopathy. These findings together with genetic interaction data show that Dlp/GPC6 is a novel, physiologically relevant target of TDP-43 proteinopathy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Glipicanos/metabolismo , Proteínas Nucleares/metabolismo , Ribosomas/metabolismo , Proteinopatías TDP-43/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Drosophila , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , ARN Mensajero/metabolismo , Médula Espinal/metabolismo , Proteinopatías TDP-43/patología
7.
Front Mol Biosci ; 6: 154, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998750

RESUMEN

TAR DNA binding protein (TDP-43) is a nucleic acid binding protein associated with insoluble cytoplasmic aggregates in several neurodegenerative disorders, including 97% of the ALS cases. In healthy individuals, TDP-43 is primarily localized to the nucleus; it can shuttle between the nucleus and the cytoplasm, and is involved in several aspects of RNA processing including transcription, splicing, RNA stability, transport, localization, stress granule (SG) formation, and translation. Upon stress, TDP-43 aggregates in the cytoplasm and associates with several types of RNA and protein assemblies, resulting in nuclear depletion of TDP-43. Under conditions of prolonged stress, cytoplasmic TDP-43 undergoes liquid-liquid phase separation (LLPS) and becomes less mobile. Evidence exists to support a scenario in which insoluble TDP-43 complexes sequester RNA and/or proteins causing disturbances in both ribostasis and proteostasis, which in turn contribute to neurodegeneration. However, the relationship between RNA binding and TDP-43 toxicity remains unclear. Recent studies provide conflicting views on the role of RNA in TDP-43 toxicity, with some finding RNA as a toxic factor whereby RNA binding contributes to TDP-43 toxicity, while others find RNA to be a protective factor that inhibits TDP-43 aggregation. Here we review and discuss these recent reports, which ultimately highlight the importance of understanding the heterogeneity of TDP-43 assemblies and collectively point to solubilizing TDP-43 as a potential therapeutic strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...