Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 12: 627050, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889176

RESUMEN

Gene editing of the mitochondrial genome using the CRISPR-Cas9 system is highly challenging mainly due to sub-efficient delivery of guide RNA and Cas9 enzyme complexes into the mitochondria. In this study, we were able to perform gene editing in the mitochondrial DNA by appending an NADH-ubiquinone oxidoreductase chain 4 (ND4) targeting guide RNA to an RNA transport-derived stem loop element (RP-loop) and expressing the Cas9 enzyme with a preceding mitochondrial localization sequence. We observe mitochondrial colocalization of RP-loop gRNA and a marked reduction of ND4 expression in the cells carrying a 11205G variant in their ND4 sequence coincidently decreasing the mtDNA levels. This proof-of-concept study suggests that a stem-loop element added sgRNA can be transported to the mitochondria and functionally interact with Cas9 to mediate sequence-specific mtDNA cleavage. Using this novel approach to target the mtDNA, our results provide further evidence that CRISPR-Cas9-mediated gene editing might potentially be used to treat mitochondrial-related diseases.

2.
Stem Cells ; 36(2): 192-205, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29044892

RESUMEN

One strategy for stem cell-based therapy of the cerebral cortex involves the generation and transplantation of functional, histocompatible cortical-like neurons from embryonic stem cells (ESCs). Diploid parthenogenetic Pg-ESCs have recently emerged as a promising source of histocompatible ESC derivatives for organ regeneration but their utility for cerebral cortex therapy is unknown. A major concern with Pg-ESCs is genomic imprinting. In contrast with biparental Bp-ESCs derived from fertilized oocytes, Pg-ESCs harbor two maternal genomes but no sperm-derived genome. Pg-ESCs are therefore expected to have aberrant expression levels of maternally expressed (MEGs) and paternally expressed (PEGs) imprinted genes. Given the roles of imprinted genes in brain development, tissue homeostasis and cancer, their deregulation in Pg-ESCs might be incompatible with therapy. Here, we report that, unexpectedly, only one gene out of 7 MEGs and 12 PEGs was differentially expressed between Pg-ESCs and Bp-ESCs while 13 were differentially expressed between androgenetic Ag-ESCs and Bp-ESCs, indicating that Pg-ESCs but not Ag-ESCs, have a Bp-like imprinting compatible with therapy. In vitro, Pg-ESCs generated cortical-like progenitors and electrophysiologically active glutamatergic neurons that maintained the Bp-like expression levels for most imprinted genes. In vivo, Pg-ESCs participated to the cortical lineage in fetal chimeras. Finally, transplanted Pg-ESC derivatives integrated into the injured adult cortex and sent axonal projections in the host brain. In conclusion, mouse Pg-ESCs generate functional cortical-like neurons with Bp-like imprinting and their derivatives properly integrate into both the embryonic cortex and the injured adult cortex. Collectively, our data support the utility of Pg-ESCs for cortical therapy. Stem Cells 2018;36:192-205.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Animales , Metilación de ADN/genética , Metilación de ADN/fisiología , Electrofisiología , Impresión Genómica/genética , Impresión Genómica/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Partenogénesis/genética , Partenogénesis/fisiología
3.
PLoS One ; 11(12): e0166822, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27926922

RESUMEN

Transferring mouse mutations into specific mouse strain backgrounds can be critical for appropriate analysis of phenotypic effects of targeted genomic alterations and quantitative trait loci. Speed congenic breeding strategies incorporating marker-assisted selection of progeny with the highest percentage target background as breeders for the next generation can produce congenic strains within approximately 5 generations. When mating selected donor males to target strain females, this may require more than 1 year, with each generation lasting 10 to 11 weeks including 3 weeks of gestation and 7 to 8 weeks until the males reach sexual maturity. Because ovulation can be induced in female mice as early as 3 weeks of age, superovulation-aided backcrossing of marker-selected females could accelerate the production of congenic animals by approximately 4 weeks per generation, reducing time and cost. Using this approach, we transferred a transgenic strain of undefined genetic background to >99% C57BL/6J within 10 months, with most generations lasting 7 weeks. This involved less than 60 mice in total, with 9 to 18 animals per generation. Our data demonstrate that high-speed backcrossing through the female germline is feasible and practical with small mouse numbers.


Asunto(s)
Células Germinativas/fisiología , Reproducción/fisiología , Animales , Animales Congénicos/fisiología , Femenino , Endogamia/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Sitios de Carácter Cuantitativo/fisiología
4.
Mol Med ; 21: 185-96, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25811991

RESUMEN

Parent-of-origin imprints have been implicated in the regulation of neural differentiation and brain development. Previously we have shown that, despite the lack of a paternal genome, human parthenogenetic (PG) embryonic stem cells (hESCs) can form proliferating neural stem cells (NSCs) that are capable of differentiation into physiologically functional neurons while maintaining allele-specific expression of imprinted genes. Since biparental ("normal") hESC-derived NSCs (N NSCs) are targeted by immune cells, we characterized the immunogenicity of PG NSCs. Flow cytometry and immunocytochemistry revealed that both N NSCs and PG NSCs exhibited surface expression of human leukocyte antigen (HLA) class I but not HLA-DR molecules. Functional analyses using an in vitro mixed lymphocyte reaction assay resulted in less proliferation of peripheral blood mononuclear cells (PBMC) with PG compared with N NSCs. In addition, natural killer (NK) cells cytolyzed PG less than N NSCs. At a molecular level, expression analyses of immune regulatory factors revealed higher HLA-G levels in PG compared with N NSCs. In line with this finding, MIR152, which represses HLA-G expression, is less transcribed in PG compared with N cells. Blockage of HLA-G receptors ILT2 and KIR2DL4 on natural killer cell leukemia (NKL) cells increased cytolysis of PG NSCs. Together this indicates that PG NSCs have unique immunological properties due to elevated HLA-G expression.


Asunto(s)
Diferenciación Celular , Citotoxicidad Inmunológica , Células Madre Embrionarias/citología , Expresión Génica , Antígenos HLA-G/genética , Células Asesinas Naturales/inmunología , Células-Madre Neurales/inmunología , Células-Madre Neurales/metabolismo , Apoptosis/genética , Apoptosis/inmunología , Línea Celular , Regulación de la Expresión Génica , Antígenos HLA-DR/genética , Antígenos HLA-DR/inmunología , Antígenos HLA-DR/metabolismo , Antígenos HLA-G/inmunología , Antígenos HLA-G/metabolismo , Humanos , Células Asesinas Naturales/metabolismo , MicroARNs/genética , Células-Madre Neurales/citología
5.
Stem Cells ; 32(7): 1983-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24740448

RESUMEN

Parthenogenesis is the development of an oocyte without fertilization. Mammalian parthenogenetic (PG) embryos are not viable, but can develop into blastocysts from which embryonic stem cells (ESCs) have been derived in mouse and human. PG ESCs are frequently homozygous for alleles encoding major histocompatibility complex (MHC) molecules. MHC homozygosity permits much more efficient immune matching than MHC heterozygosity found in conventional ESCs, making PG ESCs a promising cell source for cell therapies requiring no or little immune suppression. However, findings of restricted differentiation and proliferation of PG cells in developmental chimeras have cast doubt on the potential of PG ESC derivatives for organ regeneration. To address this uncertainty, we determined whether PG ESC derivatives are effective in rescuing mice with lethal liver failure due to deficiency of fumarylacetoacetate hydrolase (Fah). In developmental chimeras generated by injecting wild-type PG ESCs into Fah-deficient blastocysts, PG ESCs differentiated into hepatocytes that could repopulate the liver, provide normal liver function, and facilitate long-term survival of adult mice. Moreover, after transplantation into adult Fah-deficient mice, PG ESC-derived hepatocytes efficiently engrafted and proliferated, leading to high-level liver repopulation. Our results show that--despite the absence of a paternal genome--PG ESCs can form therapeutically effective hepatocytes.


Asunto(s)
Células Madre Embrionarias/trasplante , Fallo Hepático/terapia , Tirosinemias/terapia , Animales , Diferenciación Celular , Células Madre Embrionarias/fisiología , Hepatocitos/fisiología , Humanos , Hígado/patología , Hígado/fisiopatología , Regeneración Hepática , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Partenogénesis
6.
PLoS One ; 9(2): e89471, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586802

RESUMEN

Tudor domain containing (Tdrd) proteins that are expressed in germ cells are divided into two groups. One group, consisting of TDRD1, TDRKH, TDRD9 and TDRD12, function in piRNA biogenesis and retrotransposon silencing, while the other group including RNF17/TDRD4 and TDRD5-7 are required for spermiogenesis. These Tdrd proteins play distinct roles during male germ cell development. Here, we report the characterization of STK31/TDRD8 in mice. STK31 contains a tudor domain and a serine/threonine kinase domain. We find that STK31 is a cytoplasmic protein in germ cells. STK31 is expressed in embryonic gonocytes of both sexes and postnatal spermatocytes and round spermatids in males. Disruption of the tudor domain and kinase domain of STK31 respectively does not affect fertility in mice. Our data suggest that the function of STK31 may be redundant with other Tdrd proteins in germ cell development.


Asunto(s)
Células Germinativas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Reproducción/genética , Animales , Western Blotting , Citoplasma/metabolismo , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Técnicas Histológicas , Masculino , Ratones , Estructura Terciaria de Proteína/genética , Reproducción/fisiología
7.
Small ; 10(5): 1015-23, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24173879

RESUMEN

A micro/nano-fabrication process of a nanochannel electroporation (NEP) array and its application for precise delivery of plasmid for non-viral gene transfection is described. A dip-combing device is optimized to produce DNA nanowires across a microridge array patterned on the polydimethylsiloxane (PDMS) surface with a yield up to 95%. Molecular imprinting based on a low viscosity resin, 1,4-butanediol diacrylate (1,4-BDDA), adopted to convert the microridge-nanowire-microridge array into a microchannel-nanochannel-microchannel (MNM) array. Secondary machining by femtosecond laser ablation is applied to shorten one side of microchannels from 3000 to 50 µm to facilitate cell loading and unloading. The biochip is then sealed in a packaging case with reservoirs and microfluidic channels to enable cell and plasmid loading, and to protect the biochip from leakage and contamination. The package case can be opened for cell unloading after NEP to allow for the follow-up cell culture and analysis. These NEP cases can be placed in a spinning disc and up to ten discs can be piled together for spinning. The resulting centrifugal force can simultaneously manipulate hundreds or thousands of cells into microchannels of NEP arrays within 3 minutes. To demonstrate its application, a 13 kbp OSKM plasmid of induced pluripotent stem cell (iPSC) is injected into mouse embryonic fibroblasts cells (MEFCs). Fluorescence detection of transfected cells within the NEP biochips shows that the delivered dosage is high and much more uniform compared with similar gene transfection carried out by the conventional bulk electroporation (BEP) method.


Asunto(s)
Electroporación/instrumentación , Electroporación/métodos , Análisis por Micromatrices/instrumentación , Microfluídica/instrumentación , Nanotecnología/instrumentación , Nanotecnología/métodos , Transfección/métodos , Animales , ADN/metabolismo , Diseño de Equipo , Fluorescencia , Ratones , Nanocables/ultraestructura , Plásmidos/metabolismo
8.
Cell Med ; 5(1): 29-42, 2013 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26858862

RESUMEN

Uniparental zygotes with two paternal (androgenetic, AG) or two maternal genomes (gynogenetic, GG) cannot develop into viable offsprings but form blastocysts from which pluripotent embryonic stem (ES) cells can be derived. For most organs, it is unclear whether uniparental ES cells can give rise to stably expandable somatic stem cells that can repair injured tissues. Even if previous reports indicated that the capacity of AG ES cells to differentiate in vitro into pan-neural progenitor cells (pNPCs) and into cells expressing neural markers is similar to biparental [normal fertilized (N)] ES cells, their potential for functional neurogenesis is not known. Here we show that murine AG pNPCs give rise to neuron-like cells, which then generate sodium-driven action potentials while maintaining fidelity of imprinted gene expression. Neural engraftment after intracerebral transplantation was achieved only by late (22 days) AG and N pNPCs with in vitro low colony-forming cell (CFC) capacity. However, persisting CFC formation seen, in particular, in early (13 or 16 days) differentiation cultures of N and AG pNPCs correlated with a high incidence of trigerm layer teratomas. As AG ES cells display functional neurogenesis and in vivo stability similar to N ES cells, they represent a unique model system to study the roles of paternal and maternal genomes on neural development and on the development of imprinting-associated brain diseases.

9.
PLoS One ; 7(8): e42800, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22880113

RESUMEN

Parent of origin imprints on the genome have been implicated in the regulation of neural cell type differentiation. The ability of human parthenogenetic (PG) embryonic stem cells (hpESCs) to undergo neural lineage and cell type-specific differentiation is undefined. We determined the potential of hpESCs to differentiate into various neural subtypes. Concurrently, we examined DNA methylation and expression status of imprinted genes. Under culture conditions promoting neural differentiation, hpESC-derived neural stem cells (hpNSCs) gave rise to glia and neuron-like cells that expressed subtype-specific markers and generated action potentials. Analysis of imprinting in hpESCs and in hpNSCs revealed that maternal-specific gene expression patterns and imprinting marks were generally maintained in PG cells upon differentiation. Our results demonstrate that despite the lack of a paternal genome, hpESCs generate proliferating NSCs that are capable of differentiation into physiologically functional neuron-like cells and maintain allele-specific expression of imprinted genes. Thus, hpESCs can serve as a model to study the role of maternal and paternal genomes in neural development and to better understand imprinting-associated brain diseases.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias/citología , Neuronas/citología , Partenogénesis , Diferenciación Celular , Metilación de ADN/genética , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Fenómenos Electrofisiológicos/genética , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Humanos , Masculino , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/metabolismo
10.
Cell Cycle ; 10(13): 2091-9, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21606677

RESUMEN

Chimeras are organisms composed of at least two genetically distinct cell lineages originating from different zygotes. In the laboratory, mouse chimeras can be produced experimentally; various techniques allow combining different early stage mouse embryos with each other or with pluripotent stem cells. Identification of the progeny of the different lineages in chimeras permits to follow cell fate and function, enabling correlation of genotype with phenotype. Mouse chimeras have become a tool to investigate critical developmental processes, including cell specification, differentiation, patterning, and the function of specific genes. In addition, chimeras can also be generated to address biological processes in the adult, including mechanisms underlying diseases or tissue repair and regeneration. This review summarizes the different types of chimeras and how they have been generated and provides examples of how mouse chimeras offer a unique and powerful system to investigate questions pertaining to cell and tissue function in the developing and adult organism.


Asunto(s)
Quimera , Enfermedad , Embrión de Mamíferos/fisiología , Regeneración/fisiología , Animales , Embrión de Mamíferos/anatomía & histología , Humanos , Ratones , Trasplante de Órganos/métodos , Células Madre/citología , Células Madre/fisiología
11.
Mol Reprod Dev ; 78(4): 241-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21308854

RESUMEN

In eukaryotes, mRNA is actively exported to the cytoplasm by a family of nuclear RNA export factors (NXF). Four Nxf genes have been identified in the mouse: Nxf1, Nxf2, Nxf3, and Nxf7. Inactivation of Nxf2, a germ cell-specific gene, causes defects in spermatogenesis. Here we report that Nxf3 is expressed exclusively in Sertoli cells of the postnatal testis, in a developmentally regulated manner. Expression of Nxf3 coincides with the cessation of Sertoli cell proliferation and the beginning of their differentiation. Continued expression of Nxf3 in mature Sertoli cells of the adult is spermatogenesis stage-independent. Nxf3 is not essential for spermatogenesis, however, suggesting functional redundancy among Nxf family members. With its unique expression pattern in the testis, the promoter of Nxf3 can be used to drive postnatal Sertoli cell-specific expression of other proteins such as Cre recombinase.


Asunto(s)
Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Células de Sertoli/metabolismo , Espermatogénesis/fisiología , Transporte Activo de Núcleo Celular , Animales , Diferenciación Celular , Femenino , Integrasas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Transporte de ARN , ARN Mensajero/metabolismo , Células de Sertoli/citología , Testículo/citología , Testículo/metabolismo
12.
J Clin Invest ; 121(2): 623-7, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21293060

RESUMEN

To be of therapeutic use, autologous stem cells derived from patients with inherited genetic disorders require genetic modification via gene repair or insertion. Here, we present proof of principle that, for diseases associated with dominant alleles (gain-of-function or haploinsufficient loss-of-function), disease allele­free ES cells can be derived from afflicted individuals without genome manipulation. This approach capitalizes on the derivation of uniparental cells, such as parthenogenetic (PG) ES cell lines from disease allele­free gametes. Diploid mammalian uniparental embryos with only maternally (oocyte-) or paternally (sperm-)derived genomes fail early in development due to the nonequivalence of parental genomes caused by genomic imprinting. However, these uniparental embryos develop to the blastocyst stage, allowing the derivation of ES cell lines. Using a mouse model for dominant beta-thalassemia, we developed disease allele­free PG ES cell lines from the oocytes of affected animals. Phenotype correction was obtained in donor-genotype recipients after transplantation of in vitro hematopoietic ES cell derivatives. This genetic correction strategy without gene targeting is potentially applicable to any dominant disease. It could also be the sole approach for larger or more complex mutations that cannot be corrected by homologous recombination.


Asunto(s)
Alelos , Modelos Animales de Enfermedad , Terapia Genética/métodos , Talasemia beta/genética , Animales , Blastocisto/citología , Blastocisto/fisiología , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL
13.
Mol Cell Biol ; 31(6): 1275-87, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21245380

RESUMEN

Histone H1 is an abundant and essential component of chromatin whose precise role in regulating gene expression is poorly understood. Here, we report that a major target of H1-mediated regulation in embryonic stem (ES) cells is the X-linked Rhox homeobox gene cluster. To address the underlying mechanism, we examined the founding member of the Rhox gene cluster-Rhox5-and found that its distal promoter (Pd) loses H1, undergoes demethylation, and is transcriptionally activated in response to loss of H1 genes in ES cells. Demethylation of the Pd is required for its transcriptional induction and we identified a single cytosine in the Pd that, when methylated, is sufficient to inhibit Pd transcription. Methylation of this single cytosine prevents the Pd from binding GA-binding protein (GABP), a transcription factor essential for Pd transcription. Thus, H1 silences Rhox5 transcription by promoting methylation of one of its promoters, a mechanism likely to extend to other H1-regulated Rhox genes, based on analysis of ES cells lacking DNA methyltransferases. The Rhox cluster genes targeted for H1-mediated transcriptional repression are also subject to another DNA methylation-regulated process: Xp imprinting. Remarkably, we found that only H1-regulated Rhox genes are imprinted, not those immune to H1-mediated repression. Together, our results indicate that the Rhox gene cluster is a major target of H1-mediated transcriptional repression in ES cells and that H1 is a candidate to have a role in Xp imprinting.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias/metabolismo , Impresión Genómica , Histonas/metabolismo , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Animales , Células Cultivadas , Citosina/metabolismo , Metilasas de Modificación del ADN/metabolismo , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Eliminación de Gen , Genes Homeobox , Histonas/genética , Proteínas de Homeodominio/metabolismo , Ratones , Familia de Multigenes , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcripción Genética
14.
PLoS One ; 5(11): e14017, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21103378

RESUMEN

Ubiquitin E3 ligases target their substrates for ubiquitination, leading to proteasome-mediated degradation or altered biochemical properties. The ubiquitin ligase Ubr2, a recognition E3 component of the N-end rule proteolytic pathway, recognizes proteins with N-terminal destabilizing residues and plays an important role in spermatogenesis. Tex19.1 (also known as Tex19) has been previously identified as a germ cell-specific protein in mouse testis. Here we report that Tex19.1 forms a stable protein complex with Ubr2 in mouse testes. The binding of Tex19.1 to Ubr2 is independent of the second position cysteine of Tex19.1, a putative target for arginylation by the N-end rule pathway R-transferase. The Tex19.1-null mouse mutant phenocopies the Ubr2-deficient mutant in three aspects: heterogeneity of spermatogenic defects, meiotic chromosomal asynapsis, and embryonic lethality preferentially affecting females. In Ubr2-deficient germ cells, Tex19.1 is transcribed, but Tex19.1 protein is absent. Our results suggest that the binding of Ubr2 to Tex19.1 metabolically stabilizes Tex19.1 during spermatogenesis, revealing a new function for Ubr2 outside the conventional N-end rule pathway.


Asunto(s)
Proteínas Nucleares/metabolismo , Espermatogénesis , Testículo/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Sitios de Unión/genética , Western Blotting , Cisteína/genética , Femenino , Inmunoprecipitación , Masculino , Metionina/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Células 3T3 NIH , Proteínas Nucleares/genética , Unión Proteica , Estabilidad Proteica , Proteínas de Unión al ARN , Transducción de Señal , Testículo/citología , Ubiquitina-Proteína Ligasas/genética
15.
J Biol Chem ; 285(53): 41337-47, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-21047779

RESUMEN

Glycogen synthase kinase-3 (Gsk-3) isoforms, Gsk-3α and Gsk-3ß, are constitutively active, largely inhibitory kinases involved in signal transduction. Underscoring their biological significance, altered Gsk-3 activity has been implicated in diabetes, Alzheimer disease, schizophrenia, and bipolar disorder. Here, we demonstrate that deletion of both Gsk-3α and Gsk-3ß in mouse embryonic stem cells results in reduced expression of the de novo DNA methyltransferase Dnmt3a2, causing misexpression of the imprinted genes Igf2, H19, and Igf2r and hypomethylation of their corresponding imprinted control regions. Treatment of wild-type embryonic stem cells and neural stem cells with the Gsk-3 inhibitor, lithium, phenocopies the DNA hypomethylation at these imprinted loci. We show that inhibition of Gsk-3 by phosphatidylinositol 3-kinase (PI3K)-mediated activation of Akt also results in reduced DNA methylation at these imprinted loci. Finally, we find that N-Myc is a potent Gsk-3-dependent regulator of Dnmt3a2 expression. In summary, we have identified a signal transduction pathway that is capable of altering the DNA methylation of imprinted loci.


Asunto(s)
Metilación de ADN , Células Madre Embrionarias/metabolismo , Regulación Enzimológica de la Expresión Génica , Impresión Genómica , Glucógeno Sintasa Quinasa 3/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Factor II del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Largo no Codificante , ARN no Traducido/metabolismo , Receptor IGF Tipo 2/metabolismo , Transducción de Señal
16.
Proc Natl Acad Sci U S A ; 107(26): 11841-6, 2010 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-20534472

RESUMEN

Piwi-interacting RNAs (piRNAs) are essential for silencing of transposable elements in the germline, but their biogenesis is poorly understood. Here we demonstrate that MOV10L1, a germ cell-specific putative RNA helicase, is associated with Piwi proteins. Genetic disruption of the MOV10L1 RNA helicase domain in mice renders both MILI and MIWI2 devoid of piRNAs. Absence of a functional piRNA pathway in Mov10l1 mutant testes causes loss of DNA methylation and subsequent derepression of retrotransposons in germ cells. The Mov10l1 mutant males are sterile owing to complete meiotic arrest. This mouse mutant expresses Piwi proteins but lacks piRNAs, suggesting that MOV10L1 is required for piRNA biogenesis and/or loading to Piwi proteins.


Asunto(s)
ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Animales , Proteínas Argonautas , Secuencia de Bases , Proteínas de Ciclo Celular , Metilación de ADN , Cartilla de ADN/genética , Fertilidad , Masculino , Meiosis , Ratones , Ratones Noqueados , Mutación , Proteínas/metabolismo , ARN Helicasas/deficiencia , Retroelementos/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Espermatocitos/metabolismo , Espermatogénesis , Espermatogonias/metabolismo , Testículo/metabolismo
17.
Int J Dev Biol ; 54(11-12): 1755-62, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21404193

RESUMEN

Patient derived stem cell-based therapies are considered a future treatment option for Parkinson´s disease, a chronic and progressive brain neurodegenerative disorder characterized by depletion of dopaminergic neurons in the basal ganglia. While many aspects of the in vitro and in vivo differentiation potential of uniparental parthenogenetic (PG) and gynogenetic (GG) embryonic stem (ES) cells of several species have been studied, the capacity of androgenetic (AG) ES cells to develop into neuronal subtypes remains unclear. Here, we investigated the potential of murine AG ES cells to undergo dopaminergic differentiation both via directed in vitro differentiation, and in vivo, in ES cell-chimeric E12.5 and E16.5 brains. We show that similar to normal (N; developed from a zygote with maternal and paternal genomes) ES cells, AG cells generated dopaminergic neurons in vitro and in E12.5 and E16.5 chimeric brains following blastocyst injection. Expression of brain-specific imprinted genes was maintained in AG and normal dopaminergic cell cultures. Our results indicate that AG ES cells have dopaminergic differentiation potential in vitro and in vivo. This contrasts with previous reports of limited neural in vivo differentiation of AG cells in later brain development, and suggests that AG ES cells could be therapeutically relevant for future cellular replacement strategies for brain disease.


Asunto(s)
Encéfalo/embriología , Diferenciación Celular , Dopamina/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Genoma , Neuronas/citología , Animales , Blastocisto , Encéfalo/citología , Línea Celular , Quimera/embriología , Quimera/genética , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trasplante de Células Madre , Cigoto
18.
Dev Biol ; 330(1): 167-74, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19345203

RESUMEN

In eukaryotes, mRNA is actively transported from nucleus to cytoplasm by a family of nuclear RNA export factors (NXF). While yeast harbors only one such factor (Mex67p), higher eukaryotes encode multiple NXFs. In mouse, four Nxf genes have been identified: Nxf1, Nxf2, Nxf3, and Nxf7. To date, the function of mouse Nxf genes has not been studied by targeted gene deletion in vivo. Here we report the generation of Nxf2 null mutant mice by homologous recombination in embryonic stem cells. Nxf2-deficient male mice exhibit fertility defects that differ between mouse strains. One third of Nxf2-deficient males on a mixed (C57BL/6x129) genetic background exhibit meiotic arrest and thus are sterile, whereas the remaining males are fertile. Disruption of Nxf2 in inbred (C57BL/6J) males impairs spermatogenesis, resulting in male subfertility, but causes no meiotic arrest. Testis weight and sperm output in C57BL/6J Nxf2(-/Y) mice are sharply reduced. Mutant epididymal sperm exhibit diminished motility. Importantly, proliferation of spermatogonia in Nxf2(-/Y) mice is significantly decreased. As a result, inactivation of Nxf2 causes depletion of germ cells in a substantial fraction of seminiferous tubules in aged mice. These studies demonstrate that Nxf2 plays a dual function in spermatogenesis: regulation of meiosis and maintenance of spermatogonial stem cells.


Asunto(s)
Meiosis , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Unión al ARN/genética , Espermatogonias/metabolismo , Factores de Edad , Animales , Proliferación Celular , Citoplasma/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte de ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Motilidad Espermática/genética , Espermatogénesis/genética , Espermatogonias/citología , Espermatogonias/crecimiento & desarrollo
19.
Stem Cells ; 26(6): 1474-83, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18369101

RESUMEN

Uniparental zygotes with two paternal (androgenetic [AG]) or two maternal (gynogenetic [GG]; parthenogenetic [PG]) genomes are not able to develop into viable offspring but can form blastocysts from which embryonic stem cells (ESCs) can be derived. Although some aspects of the in vitro and in vivo differentiation potential of PG and GG ESCs of several species have been studied, the developmental capacity of AG ESCs is much less clear. Here, we investigate the potential of murine AG ESCs to undergo neural differentiation. We observed that AG ESCs differentiate in vitro into pan-neural progenitor cells (pnPCs) that further give rise to cells that express neuronal- and astroglial-specific markers. Neural progeny of in vitro-differentiated AG ESCs exhibited fidelity of expression of six imprinted genes analyzed, with the exception of Ube3a. Bisulfite sequencing for two imprinting control regions suggested that pnPCs predominantly maintained their methylation pattern. Following blastocyst injection of AG and biparental (normal fertilized [N]) ESCs, we found widespread and evenly distributed contribution of ESC-derived cells in both AG and N chimeric early fetal brains. AG and N ESC-derived cells isolated from chimeric fetal brains by fluorescence-activated cell sorting exhibited similar neurosphere-initiating cell frequencies and neural multilineage differentiation potential. Our results indicate that AG ESC-derived neural progenitor/stem cells do not differ from N neural progenitor/stem cells in their self-renewal and neural multilineage differentiation potential. Disclosure of potential conflicts of interest is found at the end of this article.


Asunto(s)
Andrógenos/fisiología , Blastocisto/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Animales , Blastocisto/citología , Encéfalo/citología , Encéfalo/fisiología , Técnicas de Cultivo de Célula , Diferenciación Celular , División Celular , Femenino , Genes Reporteros , Genoma , Impresión Genómica , Masculino , Ratones , Ratones Endogámicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquitina-Proteína Ligasas/genética , Cigoto
20.
Methods Mol Biol ; 430: 195-211, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18370301

RESUMEN

Complementing mutant embryos or embryonic stem cells with normal cells in embryonic chimeras is a valuable tool for investigating phenotypes. Chimera approaches provide a method to examine the phenotype of mutant cells, including hematopoiesis, in mutants with early embryonic lethality. Complementation with normal cells in a chimera can, in most instances, rescue mutant cells to later stages of gestation and beyond, permitting analysis of contribution and function of mutant cells in various organs, both within the chimera, but also by using functional transplantation assays for hematopoietic stem and progenitor cells. This chapter describes principles and methods for the generation of mouse chimeras, for identification and quantitative analysis of cell contribution in chimeras, and for chimeric fetal liver transplantation into adult recipients and analysis of mutant cells in the adult.


Asunto(s)
Quimera , Hematopoyesis , Trasplante de Hígado , Hígado/embriología , Animales , Células Madre Hematopoyéticas/citología , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA