Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heredity (Edinb) ; 133(3): 137-148, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38937604

RESUMEN

Population genetic analyses can provide useful data on species' regional connectivity and diversity which can inform conservation and restoration efforts. In this study, we quantified the genetic connectivity and diversity of Stephanocoenia intersepta corals from shallow (<30 m) to mesophotic (30-45 m) depths across Florida Keys National Marine Sanctuary. We generated single nucleotide polymorphism (SNP) markers to identify genetic structuring of shallow and mesophotic S. intersepta corals. We uncovered four distinct, cryptic genetic lineages with varying levels of depth-specificity. Shallow-specific lineages exhibited lower heterozygosity and higher inbreeding relative to depth-generalist lineages found across both shallow and mesophotic reefs. Estimation of recent genetic migration rates demonstrated that mesophotic sites are more prolific sources than shallow sites, particularly in the Lower Keys and Upper Keys. Additionally, we compared endosymbiotic Symbiodiniaceae among sampled S. intersepta using the ITS2 region and SYMPORTAL analysis framework, identifying symbionts from the genera Symbiodinium, Breviolum, and Cladocopium. Symbiodiniaceae varied significantly across depth and location and exhibited significant, but weak correlation with host lineage and genotype. Together, these data demonstrate that despite population genetic structuring across depth, some mesophotic populations may provide refuge for shallow populations moving forward and remain important contributors to the overall genetic diversity of this species throughout the region. This study highlights the importance of including mesophotic as well as shallow corals in population genetic assessments and informs future science-based management, conservation, and restoration efforts within Florida Keys National Marine Sanctuary.


Asunto(s)
Antozoos , Genética de Población , Polimorfismo de Nucleótido Simple , Animales , Antozoos/genética , Antozoos/clasificación , Florida , Dinoflagelados/genética , Dinoflagelados/clasificación , Variación Genética , Simbiosis/genética , Genotipo , Arrecifes de Coral
2.
Ecol Evol ; 13(11): e10622, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020681

RESUMEN

Despite general declines in coral reef ecosystems in the tropical western Atlantic, some reefs, including mesophotic reefs (30-150 m), are hypothesized to function as coral refugia due to their relative isolation from anthropogenic stressors. Understanding the connectivity dynamics among these putative refugia and more degraded reefs is critical to develop effective management strategies that promote coral metapopulation persistence and recovery. This study presents a geographically broad assessment of shallow (<30 m) and mesophotic (>30 m) connectivity dynamics of the depth-generalist coral species Montastraea cavernosa. Over 750 coral genets were collected across the Northwest and Southern Gulf of Mexico, Florida, Cuba, and Belize, and ~5000 SNP loci were generated to quantify high-resolution genetic structure and connectivity among these populations. Generally, shallow and mesophotic populations demonstrated higher connectivity to distant populations within the same depth zone than to adjacent populations across depth zones. However, exceptions to this pattern include the Northwest Gulf of Mexico and the Florida Keys which exhibited relatively high vertical genetic connectivity. Furthermore, estimates of recent gene flow emphasize that mesophotic M. cavernosa populations are not significant sources for their local shallow counterparts, except for the Northwest Gulf of Mexico populations. Location-based differences in vertical connectivity are likely a result of diverse oceanographic and environmental conditions that may drive variation in gene flow and depth-dependent selection. These results highlight the need to evaluate connectivity dynamics and refugia potential of mesophotic coral species on a population-by-population basis and to identify stepping-stone populations that warrant incorporation in future international management approaches.

3.
Mol Ecol ; 32(19): 5394-5413, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37646698

RESUMEN

Stony coral tissue loss disease (SCTLD) remains an unprecedented disease outbreak due to its high mortality rate and rapid spread throughout Florida's Coral Reef and wider Caribbean. A collaborative effort is underway to evaluate strategies that mitigate the spread of SCTLD across coral colonies and reefs, including restoration of disease-resistant genotypes, genetic rescue, and disease intervention with therapeutics. We conducted an in-situ experiment in Southeast Florida to assess molecular responses among SCTLD-affected Montastraea cavernosa pre- and post-application of the most widely used intervention method, CoreRx Base 2B with amoxicillin. Through Tag-Seq gene expression profiling of apparently healthy, diseased, and treated corals, we identified modulation of metabolomic and immune gene pathways following antibiotic treatment. In a complementary ex-situ disease challenge experiment, we exposed nursery-cultured M. cavernosa and Orbicella faveolata fragments to SCTLD-affected donor corals to compare transcriptomic profiles among clonal individuals from unexposed controls, those exposed and displaying disease signs, and corals exposed and not displaying disease signs. Suppression of metabolic functional groups and activation of stress gene pathways as a result of SCTLD exposure were apparent in both species. Amoxicillin treatment led to a 'reversal' of the majority of gene pathways implicated in disease response, suggesting potential recovery of corals following antibiotic application. In addition to increasing our understanding of molecular responses to SCTLD, we provide resource managers with transcriptomic evidence that disease intervention with antibiotics appears to be successful and may help to modulate coral immune responses to SCTLD. These results contribute to feasibility assessments of intervention efforts following disease outbreaks and improved predictions of coral reef health across the wider Caribbean.


Asunto(s)
Antozoos , Humanos , Animales , Antozoos/genética , Amoxicilina , Arrecifes de Coral , Perfilación de la Expresión Génica , Expresión Génica
4.
PLoS One ; 16(6): e0252593, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34170916

RESUMEN

Since 2014, stony coral tissue loss disease (SCTLD) has contributed to substantial declines of reef-building corals in Florida. The emergence of this disease, which impacts over 20 scleractinian coral species, has generated a need for widespread reef monitoring and the implementation of novel survey and disease mitigation strategies. This study paired SCTLD prevalence assessments with colony-level monitoring to help improve understanding of disease dynamics on both individual coral colonies and at reef-wide scales. Benthic surveys were conducted throughout the northern Florida Reef Tract to monitor the presence/absence of disease, disease prevalence, and coral species affected by SCTLD. Observed SCTLD prevalence was lower in Jupiter and Palm Beach than in Lauderdale-by-the-Sea or St. Lucie Reef, but there were no significant changes in prevalence over time. To assess colony-level impacts of the disease, we optimized a low-cost, rapid 3D photogrammetry technique to fate-track infected Montastraea cavernosa coral colonies over four time points spanning nearly four months. Total colony area and healthy tissue area on fate-tracked colonies decreased significantly over time. However disease lesion area did not decrease over time and was not correlated with total colony area. Taken together these results suggest that targeted intervention efforts on larger colonies may maximize preservation of coral cover. Traditional coral surveys combined with 3D photogrammetry can provide greater insights into the spatiotemporal dynamics and impacts of coral diseases on individual colonies and coral communities than surveys or visual estimates of disease progression alone.


Asunto(s)
Antozoos/fisiología , Monitoreo del Ambiente/métodos , Animales , Infecciones Bacterianas/epidemiología , Arrecifes de Coral , Florida , Fotogrametría , Dinámica Poblacional , Prevalencia
5.
Sci Rep ; 10(1): 15432, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963271

RESUMEN

Coral reef habitats surrounding Cuba include relatively healthy, well-developed shallow and mesophotic (30-150 m) scleractinian communities at the cross-currents of the Tropical Western Atlantic (TWA). However, Cuba's coral communities are not immune to the declines observed throughout the TWA, and there is limited information available regarding genetic connectivity, diversity, and structure among these populations. This represents an immense gap in our understanding of coral ecology and population dynamics at both local and regional scales. To address this gap, we evaluated the population genetic structure of the coral Montastraea cavernosa across eight reef sites surrounding Cuba. Colonies were genotyped using nine microsatellite markers and > 9,000 single nucleotide polymorphism (SNP) markers generated using the 2bRAD approach to assess fine-scale genetic structure across these sites. Both the microsatellite and SNP analyses identified patterns of genetic differentiation among sample populations. While the microsatellite analyses did not identify significant genetic structure across the seven shallow M. cavernosa sampling sites, the SNP analyses revealed significant pairwise population differentiation, suggesting that differentiation is greater between eastern and western sites. This study provides insight into methodological differences between microsatellite and SNP markers including potential trade-offs between marker-specific biases, sample size, sequencing costs, and the ability to resolve subtle patterns of population genetic structure. Furthermore, this study suggests that locations in western Cuba may play important roles in this species' regional metapopulation dynamics and therefore may merit incorporation into developing international management efforts in addition to the local management the sites receive.


Asunto(s)
Antozoos/genética , Repeticiones de Microsatélite/genética , Polimorfismo de Nucleótido Simple/genética , Animales , Arrecifes de Coral , Cuba , Ecosistema , Flujo Genético , Genética de Población/métodos , Genotipo , Dinámica Poblacional
6.
Front Microbiol ; 11: 518, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32328040

RESUMEN

In Belize, shallow populations (10 and 16 m) of the coral species Montastraea cavernosa from the back reef and reef crest are genetically differentiated from deeper populations on the fore reef and reef wall (25 and 35 m). Like many species of scleractinian corals, M. cavernosa has an obligate symbiosis with dinoflagellate microalgae from the family Symbiodiniaceae. Here, we describe the Symbiodiniaceae taxa found within previously sampled and genotyped M. cavernosa populations along a depth gradient on the Belize Barrier Reef by implementing high-throughput sequencing of the ITS2 region of Symbiodiniaceae ribosomal DNA and the SymPortal analysis framework. While Symbiodiniaceae ITS2 type profiles across all sampling depths were almost entirely (99.99%) from the genus Cladocopium (formerly Symbiodinium Clade C), shallow (10 and 16 m) populations had a greater diversity of ITS2 type profiles in comparison to deeper (25 and 35 m) populations. Permutational multivariate analysis of variance (PERMANOVA) confirmed significant differences in ITS2 type profiles between shallow and deep sample populations. Overall Symbiodiniaceae communities changed significantly with depth, following patterns similar to the coral host's population genetic structure. Though physiological differences among species in the cosmopolitan genus Cladocopium are not well-described, our results suggest that although some members of Cladocopium are depth-generalists, shallow M. cavernosa populations in Belize may harbor shallow-specialized Symbiodiniaceae not found in deeper populations.

7.
Sci Rep ; 9(1): 7200, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31076586

RESUMEN

Larval connectivity among and within coral reefs is important for sustaining coral metapopulations, enhancing ecosystem resilience through species and genetic diversity, and maintaining reef ecosystems' structure and functions. This study characterized genetic structure and assessed horizontal and vertical connectivity among populations of the ubiquitous gonochoric broadcast spawning coral Montastraea cavernosa in Belize. Using nine polymorphic microsatellite loci, we genotyped M. cavernosa colonies from four depth zones at four study sites within Belizean marine management zones. Study sites were selected within South Water Caye Marine Reserve (3 sites) and Glover's Reef Marine Reserve (1 site). Strong contemporary genetic differentiation was observed between relatively shallow M. cavernosa populations (10 m, 16 m) and relatively deep (25 m, 35 m) populations, coinciding with a transition from reef crest to reef slope. These results were consistent across both marine reserves. Vertical and horizontal migration models suggest that all populations were historically panmictic, with little unidirectional migration. The relative local isolation of shallow and mesophotic M. cavernosa populations in Belize, coupled with the importance of Belize's upper mesophotic populations as potential larval sources for other areas in the Tropical Western Atlantic, reinforces the need for management strategies that conserve coral populations across all depth zones.


Asunto(s)
Antozoos/fisiología , Técnicas de Genotipaje/métodos , Repeticiones de Microsatélite , Animales , Antozoos/genética , Belice , Conservación de los Recursos Naturales , Arrecifes de Coral , Ecosistema , Evolución Molecular , Flujo Genético , Genética de Población , Genotipo , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA