Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Proteome Res ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718259

RESUMEN

Lamin A/C (LMNA) is an important component of nuclear lamina. Mutations cause arrhythmia, heart failure, and sudden cardiac death. While LMNA-associated cardiomyopathy typically has an aggressive course that responds poorly to conventional heart failure therapies, there is variability in severity and age of penetrance between and even within specific mutations, which is poorly understood at the cellular level. Further, this heterogeneity has not previously been captured to mimic the heterozygous state, nor have the hundreds of clinical LMNA mutations been represented. Herein, we have overexpressed cardiopathic LMNA variants in HEK cells and utilized state-of-the-art quantitative proteomics to compare the global proteomic profiles of (1) aggregating Q353 K alone, (2) Q353 K coexpressed with WT, (3) aggregating N195 K coexpressed with WT, and (4) nonaggregating E317 K coexpressed with WT to help capture some of the heterogeneity between mutations. We analyzed each data set to obtain the differentially expressed proteins (DEPs) and applied gene ontology (GO) and KEGG pathway analyses. We found a range of 162 to 324 DEPs from over 6000 total protein IDs with differences in GO terms, KEGG pathways, and DEPs important in cardiac function, further highlighting the complexity of cardiac laminopathies. Pathways disrupted by LMNA mutations were validated with redox, autophagy, and apoptosis functional assays in both HEK 293 cells and in induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) for LMNA N195 K. These proteomic profiles expand our repertoire for mutation-specific downstream cellular effects that may become useful as druggable targets for personalized medicine approach for cardiac laminopathies.

3.
J Am Coll Cardiol ; 83(1): 109-279, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38043043

RESUMEN

AIM: The "2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Patients With Atrial Fibrillation" provides recommendations to guide clinicians in the treatment of patients with atrial fibrillation. METHODS: A comprehensive literature search was conducted from May 12, 2022, to November 3, 2022, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through November 2022, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE: Atrial fibrillation is the most sustained common arrhythmia, and its incidence and prevalence are increasing in the United States and globally. Recommendations from the "2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" and the "2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing atrial fibrillation and thromboembolic risk assessment, anticoagulation, left atrial appendage occlusion, atrial fibrillation catheter or surgical ablation, and risk factor modification and atrial fibrillation prevention have been developed.


Asunto(s)
Fibrilación Atrial , Cardiología , Tromboembolia , Humanos , Estados Unidos/epidemiología , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/terapia , Fibrilación Atrial/epidemiología , American Heart Association , Factores de Riesgo
4.
Circulation ; 149(1): e1-e156, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38033089

RESUMEN

AIM: The "2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation" provides recommendations to guide clinicians in the treatment of patients with atrial fibrillation. METHODS: A comprehensive literature search was conducted from May 12, 2022, to November 3, 2022, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through November 2022, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE: Atrial fibrillation is the most sustained common arrhythmia, and its incidence and prevalence are increasing in the United States and globally. Recommendations from the "2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" and the "2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation" have been updated with new evidence to guide clinicians. In addition, new recommendations addressing atrial fibrillation and thromboembolic risk assessment, anticoagulation, left atrial appendage occlusion, atrial fibrillation catheter or surgical ablation, and risk factor modification and atrial fibrillation prevention have been developed.


Asunto(s)
Fibrilación Atrial , Cardiología , Tromboembolia , Humanos , American Heart Association , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/epidemiología , Fibrilación Atrial/terapia , Factores de Riesgo , Estados Unidos/epidemiología
5.
Circ Arrhythm Electrophysiol ; 17(1): e012072, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38099441

RESUMEN

Although there is consensus on the management of patients with Brugada Syndrome with high risk for sudden cardiac arrest, asymptomatic or intermediate-risk patients present clinical management challenges. This document explores the management opinions of experts throughout the world for patients with Brugada Syndrome who do not fit guideline recommendations. Four real-world clinical scenarios were presented with commentary from small expert groups for each case. All authors voted on case-specific questions to evaluate the level of consensus among the entire group in nuanced diagnostic and management decisions relevant to each case. Points of agreement, points of controversy, and gaps in knowledge are highlighted.


Asunto(s)
Síndrome de Brugada , Paro Cardíaco , Humanos , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/terapia , Electrocardiografía , Paro Cardíaco/diagnóstico , Paro Cardíaco/terapia , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/prevención & control , Consenso
7.
Circ Genom Precis Med ; 16(2): e003726, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37071726

RESUMEN

BACKGROUND: Long-QT syndrome (LQTS) is characterized by QT prolongation and increased risk for syncope, seizures, and sudden cardiac death. The majority of LQTS stems from pathogenic mutations in KCNQ1, KCNH2, or SCN5A. However, ≈10% of patients with LQTS remain genetically elusive. We utilized genome sequencing to identify a novel LQTS genetic substrate in a multigenerational genotype-negative LQTS pedigree. METHODS: Genome sequencing was performed on 5 affected family members. Only rare nonsynonymous variants present in all affected family members were considered. The candidate variant was characterized functionally in patient-derived induced pluripotent stem cell and gene-edited, variant corrected, isogenic control induced pluripotent stem cell-derived cardiomyocytes. RESULTS: A missense variant (p.G6S) was identified in ALG10B-encoded α-1,2-glucosyltransferase B protein. ALG10B (alpha-1,2-glucosyltransferase B protein) is a known interacting protein of KCNH2-encoded Kv11.1 (HERG [human Ether-à-go-go-related gene]). Compared with isogenic control, ALG10B-p.G6S induced pluripotent stem cell-derived cardiomyocytes showed (1) decreased protein expression of ALG10B (p.G6S, 0.7±0.18, n=8 versus control, 1.25±0.16, n=9; P<0.05), (2) significant retention of HERG in the endoplasmic reticulum (P<0.0005), and (3) a significantly prolonged action potential duration confirmed by both patch clamp (p.G6S, 531.1±38.3 ms, n=15 versus control, 324.1±21.8 ms, n=13; P<0.001) and multielectrode assay (P<0.0001). Lumacaftor-a compound known to rescue HERG trafficking-shortened the pathologically prolonged action potential duration of ALG10B-p.G6S induced pluripotent stem cell-derived cardiomyocytes by 10.6% (n=31 electrodes; P<0.001). CONCLUSIONS: Here, we demonstrate that ALG10B-p.G6S downregulates ALG10B, resulting in defective HERG trafficking and action potential duration prolongation. Therefore, ALG10B is a novel LQTS-susceptibility gene underlying the LQTS phenotype observed in a multigenerational pedigree. ALG10B mutation analysis may be warranted, especially in genotype-negative patients with an LQT2-like phenotype.


Asunto(s)
Canales de Potasio Éter-A-Go-Go , Síndrome de QT Prolongado , Humanos , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Canal de Potasio ERG1/genética , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Mutación , Genotipo
8.
J Mol Cell Cardiol ; 177: 38-49, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842733

RESUMEN

RATIONALE: Flask-shaped invaginations of the cardiomyocyte sarcolemma called caveolae require the structural protein caveolin-3 (Cav-3) and host a variety of ion channels, transporters, and signaling molecules. Reduced Cav-3 expression has been reported in models of heart failure, and variants in CAV3 have been associated with the inherited long-QT arrhythmia syndrome. Yet, it remains unclear whether alterations in Cav-3 levels alone are sufficient to drive aberrant repolarization and increased arrhythmia risk. OBJECTIVE: To determine the impact of cardiac-specific Cav-3 ablation on the electrophysiological properties of the adult mouse heart. METHODS AND RESULTS: Cardiac-specific, inducible Cav3 homozygous knockout (Cav-3KO) mice demonstrated a marked reduction in Cav-3 expression by Western blot and loss of caveolae by electron microscopy. However, there was no change in macroscopic cardiac structure or contractile function. The QTc interval was increased in Cav-3KO mice, and there was an increased propensity for ventricular arrhythmias. Ventricular myocytes isolated from Cav-3KO mice exhibited a prolonged action potential duration (APD) that was due to reductions in outward potassium currents (Ito, Iss) and changes in inward currents including slowed inactivation of ICa,L and increased INa,L. Mathematical modeling demonstrated that the changes in the studied ionic currents were adequate to explain the prolongation of the mouse ventricular action potential. Results from human iPSC-derived cardiomyocytes showed that shRNA knockdown of Cav-3 similarly prolonged APD. CONCLUSION: We demonstrate that Cav-3 and caveolae regulate cardiac repolarization and arrhythmia risk via the integrated modulation of multiple ionic currents.


Asunto(s)
Caveolas , Síndrome de QT Prolongado , Animales , Humanos , Ratones , Caveolas/metabolismo , Caveolina 3/genética , Caveolina 3/metabolismo , Arritmias Cardíacas/metabolismo , Potenciales de Acción , Canales Iónicos/metabolismo , Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo
9.
Front Cardiovasc Med ; 9: 966094, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035948

RESUMEN

Disease modeling using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has both challenges and promise. While patient-derived iPSC-CMs provide a unique opportunity for disease modeling with isogenic cells, the challenge is that these cells still demonstrate distinct properties which make it functionally less akin to adult cardiomyocytes. In response to this challenge, numerous innovations in differentiation and modification of hiPSC-CMs and culture techniques have been developed. Here, we provide a focused commentary on hiPSC-CMs for use in disease modeling, the progress made in generating electrically and metabolically mature hiPSC-CMs and enabling investigative platforms. The solutions are bringing us closer to the promise of modeling heart disease using human cells in vitro.

10.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35806392

RESUMEN

The electrocardiogram (ECG) empowered clinician scientists to measure the electrical activity of the heart noninvasively to identify arrhythmias and heart disease. Shortly after the standardization of the 12-lead ECG for the diagnosis of heart disease, several families with autosomal recessive (Jervell and Lange-Nielsen Syndrome) and dominant (Romano-Ward Syndrome) forms of long QT syndrome (LQTS) were identified. An abnormally long heart rate-corrected QT-interval was established as a biomarker for the risk of sudden cardiac death. Since then, the International LQTS Registry was established; a phenotypic scoring system to identify LQTS patients was developed; the major genes that associate with typical forms of LQTS were identified; and guidelines for the successful management of patients advanced. In this review, we discuss the molecular and cellular mechanisms for LQTS associated with missense variants in KCNQ1 (LQT1) and KCNH2 (LQT2). We move beyond the "benign" to a "pathogenic" binary classification scheme for different KCNQ1 and KCNH2 missense variants and discuss gene- and mutation-specific differences in K+ channel dysfunction, which can predispose people to distinct clinical phenotypes (e.g., concealed, pleiotropic, severe, etc.). We conclude by discussing the emerging computational structural modeling strategies that will distinguish between dysfunctional subtypes of KCNQ1 and KCNH2 variants, with the goal of realizing a layered precision medicine approach focused on individuals.


Asunto(s)
Canal de Potasio KCNQ1 , Síndrome de Romano-Ward , Canal de Potasio ERG1/genética , Electrocardiografía , Humanos , Canal de Potasio KCNQ1/genética , Mutación , Fenotipo , Síndrome de Romano-Ward/genética
11.
Front Cardiovasc Med ; 9: 900431, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35859585

RESUMEN

Over the last two decades, an exponentially expanding number of genetic variants have been identified associated with inherited cardiac conditions. These tremendous gains also present challenges in deciphering the clinical relevance of unclassified variants or variants of uncertain significance (VUS). This review provides an overview of the advancements (and challenges) in functional and computational approaches to characterize variants and help keep pace with VUS identification related to inherited heart diseases.

13.
JAMA Cardiol ; 7(1): 84-92, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34730774

RESUMEN

Importance: Calcium-release deficiency syndrome (CRDS), which is caused by loss-of-function variants in cardiac ryanodine receptor 2 (RyR2), is an emerging cause of ventricular fibrillation. However, the lack of complex polymorphic/bidirectional ventricular tachyarrhythmias during exercise stress testing (EST) may distinguish it from catecholaminergic polymorphic ventricular tachycardia (CPVT). Recently, in the first clinical series describing the condition, mouse and human studies showed that the long-burst, long-pause, short-coupled ventricular extra stimulus (LBLPS) electrophysiology protocol reliably induced CRDS ventricular arrhythmias. Data from larger populations with CRDS and its associated spectrum of disease are lacking. Objective: To further insight into CRDS through international collaboration. Design, Setting, and Participants: In this multicenter observational cohort study, probands with unexplained life-threatening arrhythmic events and an ultrarare RyR2 variant were identified. Variants were expressed in HEK293 cells and subjected to caffeine stimulation to determine their functional impact. Data were collected from September 1, 2012, to March 6, 2021, and analyzed from August 9, 2015, to March 6, 2021. Main Outcomes and Measures: The functional association of RyR2 variants found in putative cases of CRDS and the associated clinical phenotype(s). Results: Of 10 RyR2 variants found in 10 probands, 6 were loss-of-function, consistent with CRDS (p.E4451del, p.F4499C, p.V4606E, p.R4608Q, p.R4608W, and p.Q2275H) (in 4 [67%] male and 2 [33%] female probands; median age at presentation, 22 [IQR, 8-34] years). In 5 probands with a documented trigger, 3 were catecholamine driven. During EST, 3 probands with CRDS had no arrhythmias, 1 had a monomorphic couplet, and 2 could not undergo EST (deceased). Relatives of the decedents carrying the RyR2 variant did not have EST results consistent with CPVT. After screening 3 families, 13 relatives were diagnosed with CRDS, including 3 with previous arrhythmic events (23%). None had complex ventricular tachyarrhythmias during EST. Among the 19 confirmed cases with CRDS, 10 had at least 1 life-threatening event at presentation and/or during a median follow-up of 7 (IQR, 6-18) years. Two of the 3 device-detected ventricular fibrillation episodes were induced by a spontaneous LBLPS-like sequence. ß-Blockers were used in 16 of 17 surviving patients (94%). Three of 16 individuals who were reportedly adherent to ß-blocker therapy (19%) had breakthrough events. Conclusions and Relevance: The results of this study suggest that calcium-release deficiency syndrome due to RyR2 loss-of-function variants mechanistically and phenotypically differs from CPVT. Ventricular fibrillation may be precipitated by a spontaneous LBLPS-like sequence of ectopy; however, CRDS remains difficult to recognize clinically. These data highlight the need for better diagnostic tools and treatments for this emerging condition.


Asunto(s)
Muerte Súbita Cardíaca/prevención & control , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Adolescente , Adulto , Niño , Muerte Súbita Cardíaca/epidemiología , Electrocardiografía , Femenino , Estudios de Seguimiento , Salud Global , Humanos , Masculino , Morbilidad/tendencias , Fenotipo , Estudios Prospectivos , Estudios Retrospectivos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/epidemiología , Taquicardia Ventricular/metabolismo , Adulto Joven
15.
Circ Arrhythm Electrophysiol ; 14(12): e007958, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34865518

RESUMEN

Shared decision making (SDM) has been advocated to improve patient care, patient decision acceptance, patient-provider communication, patient motivation, adherence, and patient reported outcomes. Documentation of SDM is endorsed in several society guidelines and is a condition of reimbursement for selected cardiovascular and cardiac arrhythmia procedures. However, many clinicians argue that SDM already occurs with clinical encounter discussions or the process of obtaining informed consent and note the additional imposed workload of using and documenting decision aids without validated tools or evidence that they improve clinical outcomes. In reality, SDM is a process and can be done without decision tools, although the process may be variable. Also, SDM advocates counter that the low-risk process of SDM need not be held to the high bar of demonstrating clinical benefit and that increasing the quality of decision making should be sufficient. Our review leverages a multidisciplinary group of experts in cardiology, cardiac electrophysiology, epidemiology, and SDM, as well as a patient advocate. Our goal is to examine and assess SDM methodology, tools, and available evidence on outcomes in patients with heart rhythm disorders to help determine the value of SDM, assess its possible impact on electrophysiological procedures and cardiac arrhythmia management, better inform regulatory requirements, and identify gaps in knowledge and future needs.


Asunto(s)
Arritmias Cardíacas/terapia , Toma de Decisiones Clínicas , Toma de Decisiones Conjunta , Técnicas de Apoyo para la Decisión , Técnicas Electrofisiológicas Cardíacas , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatología , Medicina Basada en la Evidencia , Humanos , Participación del Paciente , Seguridad del Paciente , Valor Predictivo de las Pruebas , Pronóstico , Medición de Riesgo , Factores de Riesgo
16.
NPJ Genom Med ; 6(1): 103, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862408

RESUMEN

Hundreds of LMNA variants have been associated with several distinct disease phenotypes. However, genotype-phenotype relationships remain largely undefined and the impact for most variants remains unknown. We performed a functional analysis for 178 variants across five structural domains using two different overexpression models. We found that lamin A aggregation is a major determinant for skeletal and cardiac laminopathies. An in vitro solubility assay shows that aggregation-prone variants in the immunoglobulin-like domain correlate with domain destabilization. Finally, we demonstrate that myopathic-associated LMNA variants show aggregation patterns in induced pluripotent stem cell derived-cardiomyocytes (iPSC-CMs) in contrast to non-myopathic LMNA variants. Our data-driven approach (1) reveals that striated muscle laminopathies are predominantly protein misfolding diseases, (2) demonstrates an iPSC-CM experimental platform for characterizing laminopathic variants in human cardiomyocytes, and (3) supports a functional assay to aid in assessing pathogenicity for myopathic variants of uncertain significance.

17.
Biochemistry ; 60(44): 3292-3301, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34676745

RESUMEN

Membrane proteins represent a large family of proteins that perform vital physiological roles and represent key drug targets. Despite their importance, bioanalytical methods aiming to comprehensively characterize the post-translational modification (PTM) of membrane proteins remain challenging compared to other classes of proteins in part because of their inherent low expression and hydrophobicity. The inward rectifier potassium channel (Kir) 2.1, an integral membrane protein, is critical for the maintenance of the resting membrane potential and phase-3 repolarization of the cardiac action potential in the heart. The importance of this channel to cardiac physiology is highlighted by the recognition of several sudden arrhythmic death syndromes, Andersen-Tawil and short QT syndromes, which are associated with loss or gain of function mutations in Kir2.1, often triggered by changes in the ß-adrenergic tone. Therefore, understanding the PTMs of this channel (particularly ß-adrenergic tone-driven phosphorylation) is important for arrhythmia prevention. Here, we developed a proteomic method, integrating both top-down (intact protein) and bottom-up (after enzymatic digestion) proteomic analyses, to characterize the PTMs of recombinant wild-type and mutant Kir2.1, successfully mapping five novel sites of phosphorylation and confirming a sixth site. Our study provides a framework for future work to assess the role of PTMs in regulating Kir2.1 functions.


Asunto(s)
Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/fisiología , Proteómica/métodos , Potenciales de Acción , Células HEK293 , Corazón , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Potenciales de la Membrana , Proteínas de la Membrana/metabolismo , Fosforilación , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética , Procesamiento Proteico-Postraduccional , Proyectos de Investigación
18.
Circ Arrhythm Electrophysiol ; 14(7): e009726, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34238011

RESUMEN

While published guidelines are useful in the care of patients with long-QT syndrome, it can be difficult to decide how to apply the guidelines to individual patients, particularly those with intermediate risk. We explored the diversity of opinion among 24 clinicians with expertise in long-QT syndrome. Experts from various regions and institutions were presented with 4 challenging clinical scenarios and asked to provide commentary emphasizing why they would make their treatment recommendations. All 24 authors were asked to vote on case-specific questions so as to demonstrate the degree of consensus or divergence of opinion. Of 24 authors, 23 voted and 1 abstained. Details of voting results with commentary are presented. There was consensus on several key points, particularly on the importance of the diagnostic evaluation and of ß-blocker use. There was diversity of opinion about the appropriate use of other therapeutic measures in intermediate-risk individuals. Significant gaps in knowledge were identified.


Asunto(s)
Antagonistas Adrenérgicos beta/uso terapéutico , Consenso , Técnicas de Diagnóstico Cardiovascular , Manejo de la Enfermedad , Síndrome de QT Prolongado/congénito , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/cirugía
19.
Heart Rhythm ; 18(8): 1423-1434, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33857643

RESUMEN

Potassium inward rectifier channel Kir2 is an important component of terminal cardiac repolarization and resting membrane stability. This functionality is part of balanced cardiac excitability and is a defining feature of excitable cardiac membranes. "Gain-of-function" or "loss-of-function" mutations in KCNJ2, the gene encoding Kir2.1, cause genetic sudden cardiac death syndromes, and loss of the Kir2 current IK1 is a major contributing factor to arrhythmogenesis in failing human hearts. Here we provide a contemporary review of the functional structure, physiology, and pharmacology of Kir2 channels. Beyond the structure and functional relationships, we will focus on the elements of clinically used drugs that block the channel and the implications for treatment of atrial fibrillation with IK1-blocking agents. We will also review the clinical disease entities associated with KCNJ2 mutations and the growing area of research into associated arrhythmia mechanisms. Lastly, the presence of Kir2 channels has become a tipping point for electrical maturity in induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) and highlights the significance of understanding why Kir2 in iPS-CMs is important to consider for Comprehensive In Vitro Proarrhythmia Assay and drug safety testing.


Asunto(s)
Arritmias Cardíacas/genética , ADN/genética , Mutación , Miocitos Cardíacos/metabolismo , Canales de Potasio de Rectificación Interna/genética , Potenciales de Acción , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Análisis Mutacional de ADN , Humanos , Miocitos Cardíacos/patología , Canales de Potasio de Rectificación Interna/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...