Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Integr Org Biol ; 5(1): obad026, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545740

RESUMEN

Jumping is a rapid locomotory mode widespread in terrestrial organisms. However, it is a rare specialization in ants. Forward jumping has been reported within four distantly related ant genera: Gigantiops, Harpegnathos, Myrmecia, and Odontomachus. The temporal engagement of legs/body parts during jump, however, varies across these genera. It is unknown what morphological adaptations underlie such behaviors and whether jumping in ants is solely driven directly by muscle contraction or additionally relies on elastic recoil mechanism. We investigated the morphological adaptations for jumping behavior by comparing differences in the locomotory musculature between jumping and non-jumping relatives using X-ray micro-CT and 3D morphometrics. We found that the size-specific volumes of the trochanter depressor muscle (scm6) of the middle and hind legs are 3-5 times larger in jumping ants, and that one coxal remotor muscle (scm2) is reduced in volume in the middle and/or hind legs. Notably, the enlargement in the volume of other muscle groups is directly linked to the legs or body parts engaged during the jump. Furthermore, a direct comparison of the muscle architecture revealed two significant differences between jumping vs. non-jumping ants: First, the relative Physiological Cross-Sectional Area (PCSA) of the trochanter depressor muscles of all three legs were larger in jumping ants, except in the front legs of Odontomachus rixosus and Myrmecia nigrocincta; second, the relative muscle fiber length was shorter in jumping ants compared to non-jumping counterparts, except in the front legs of O. rixosus and M. nigrocincta. These results suggest that the difference in relative muscle volume in jumping ants is largely invested in the area (PCSA), and not in fiber length. There was no clear difference in the pennation angle between jumping and non-jumping ants. Additionally, we report that the hind leg length relative to body length was longer in jumping ants. Based on direct comparison of the observed vs. possible work and power output during jumps, we surmise that direct muscle contractions suffice to explain jumping performance in three species, except for O. rixosus, where the lack of data on jumping performance prevents us from drawing definitive conclusions for this particular species. We suggest that increased investment in jumping-relevant musculature is a primary morphological adaptation that separates jumping from non-jumping ants. These results elucidate the common and idiosyncratic morphological changes underlying this rare adaptation in ants. まとぅみ (Okinawan language-Uchinaaguchi) (Japanese) РЕЗЮМЕ (Kazakh) ZUSAMMENFASSUNG (German).

2.
Arthropod Struct Dev ; 59: 100977, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32818807

RESUMEN

The ability of ant colonies to transport, store, and distribute food resources through trophallaxis is a key advantage of social life. Nonetheless, how the structure of the digestive system has adapted across the ant phylogeny to facilitate these abilities is still not well understood. The crop and proventriculus, structures in the ant foregut (stomodeum), have received most attention for their roles in trophallaxis. However, potential roles of the esophagus have not been as well studied. Here, we report for the first time the presence of an auxiliary thoracic crop in Pheidole aberrans and Pheidole deima using X-ray micro-computed tomography and 3D segmentation. Additionally, we describe morphological modifications involving the endo- and exoskeleton that are associated with the presence of the thoracic crop. Our results indicate that the presence of a thoracic crop in major workers suggests their potential role as repletes or live food reservoirs, expanding the possibilities of tasks assumed by these individuals in the colony. Our contribution emphasizes the utility of combining data from external and internal morphology to better understand functional and behavioral mechanisms.


Asunto(s)
Hormigas/anatomía & histología , Animales , Especificidad de la Especie , Tórax/anatomía & histología , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...