Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39061739

RESUMEN

Flexor tendon lacerations are primarily treated by surgical repair. Limited intrinsic healing ability means the repair site can remain weak. Furthermore, adhesion formation may reduce range of motion post-operatively. Mesenchymal stromal cells (MSCs) have been trialled for repair and regeneration of multiple musculoskeletal structures. Our goal was to determine the efficacy of MSCs in enhancing the biomechanical properties of surgically repaired flexor tendons. A PRISMA systematic review was conducted using four databases (PubMed, Ovid, Web of Science, and CINAHL) to identify studies using MSCs to augment surgical repair of flexor tendon injuries in animals compared to surgical repair alone. Nine studies were included, which investigated either bone marrow- or adipose-derived MSCs. Results of biomechanical testing were extracted and meta-analyses were performed regarding the maximum load, friction and properties relating to viscoelastic behaviour. There was no significant difference in maximum load at final follow-up. However, friction, a surrogate measure of adhesions, was significantly reduced following the application of MSCs (p = 0.04). Other properties showed variable results and dissipation of the therapeutic benefits of MSCs over time. In conclusion, MSCs reduce adhesion formation following tendon injury. This may result from their immunomodulatory function, dampening the inflammatory response. However, this may come at the cost of favourable healing which will restore the tendon's viscoelastic properties. The short duration of some improvements may reflect MSCs' limited survival or poor retention. Further investigation is needed to clarify the effect of MSC therapy and optimise its duration of action.

2.
NPJ Digit Med ; 7(1): 131, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762669

RESUMEN

Subjectivity and ambiguity of visual field classification limits the accuracy and reliability of glaucoma diagnosis, prognostication, and management decisions. Standardised rules for classifying glaucomatous visual field defects exist, but these are labour-intensive and therefore impractical for day-to-day clinical work. Here a web-application, Glaucoma Field Defect Classifier (GFDC), for automatic application of Hodapp-Parrish-Anderson, is presented and validated in a cross-sectional study. GFDC exhibits perfect accuracy in classifying mild, moderate, and severe glaucomatous field defects. GFDC may thereby improve the accuracy and fairness of clinical decision-making in glaucoma. The application and its source code are freely hosted online for clinicians and researchers to use with glaucoma patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA