Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Immun ; 84(1): 365-74, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26553463

RESUMEN

Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Peroxiredoxina VI/metabolismo , Activadores Plasminogénicos/metabolismo , Yersinia pestis/metabolismo , Animales , Proteínas Bacterianas/genética , Líquido del Lavado Bronquioalveolar/química , Progresión de la Enfermedad , Femenino , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Peroxidasa/metabolismo , Fosfolipasas A2/metabolismo , Peste/microbiología , Activadores Plasminogénicos/genética , Yersinia pestis/genética , Yersinia pestis/inmunología
2.
Infect Immun ; 83(12): 4837-47, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26438794

RESUMEN

Many pathogens usurp the host hemostatic system during infection to promote pathogenesis. Yersinia pestis, the causative agent of plague, expresses the plasminogen activator protease Pla, which has been shown in vitro to target and cleave multiple proteins within the fibrinolytic pathway, including the plasmin inhibitor α2-antiplasmin (A2AP). It is not known, however, if Pla inactivates A2AP in vivo; the role of A2AP during respiratory Y. pestis infection is not known either. Here, we show that Y. pestis does not appreciably cleave A2AP in a Pla-dependent manner in the lungs during experimental pneumonic plague. Furthermore, following intranasal infection with Y. pestis, A2AP-deficient mice exhibit no difference in survival time, bacterial burden in the lungs, or dissemination from wild-type mice. Instead, we found that in the absence of Pla, A2AP contributes to the control of the pulmonary inflammatory response during infection by reducing neutrophil recruitment and cytokine production, resulting in altered immunopathology of the lungs compared to A2AP-deficient mice. Thus, our data demonstrate that A2AP is not significantly affected by the Pla protease during pneumonic plague, and although A2AP participates in immune modulation in the lungs, it has limited impact on the course or ultimate outcome of the infection.


Asunto(s)
Proteínas Bacterianas/inmunología , Regulación Bacteriana de la Expresión Génica , Pulmón/inmunología , Peste/inmunología , Activadores Plasminogénicos/inmunología , Inhibidores de Serina Proteinasa/inmunología , Yersinia pestis/inmunología , alfa 2-Antiplasmina/inmunología , Animales , Carga Bacteriana , Proteínas Bacterianas/genética , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Progresión de la Enfermedad , Interacciones Huésped-Patógeno , Inmunidad Innata , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/microbiología , Neutrófilos/patología , Peste/microbiología , Peste/mortalidad , Peste/patología , Activadores Plasminogénicos/genética , Inhibidores de Serina Proteinasa/genética , Transducción de Señal , Análisis de Supervivencia , Yersinia pestis/genética , Yersinia pestis/patogenicidad , alfa 2-Antiplasmina/deficiencia , alfa 2-Antiplasmina/genética
3.
Nat Commun ; 6: 7487, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26123398

RESUMEN

Yersinia pestis causes the fatal respiratory disease pneumonic plague. Y. pestis recently evolved from the gastrointestinal pathogen Y. pseudotuberculosis; however, it is not known at what point Y. pestis gained the ability to induce a fulminant pneumonia. Here we show that the acquisition of a single gene encoding the protease Pla was sufficient for the most ancestral, deeply rooted strains of Y. pestis to cause pneumonic plague, indicating that Y. pestis was primed to infect the lungs at a very early stage in its evolution. As Y. pestis further evolved, modern strains acquired a single amino-acid modification within Pla that optimizes protease activity. While this modification is unnecessary to cause pneumonic plague, the substitution is instead needed to efficiently induce the invasive infection associated with bubonic plague. These findings indicate that Y. pestis was capable of causing pneumonic plague before it evolved to optimally cause invasive infections in mammals.


Asunto(s)
Peste/microbiología , Yersinia pestis/clasificación , Yersinia pestis/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica/fisiología , Ratones , Ratones Endogámicos C57BL , Yersinia pestis/patogenicidad
4.
PLoS One ; 9(9): e107002, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25198697

RESUMEN

Many Gram-negative bacteria produce outer membrane vesicles (OMVs) during cell growth and division, and some bacterial pathogens deliver virulence factors to the host via the release of OMVs during infection. Here we show that Yersinia pestis, the causative agent of the disease plague, produces and releases native OMVs under physiological conditions. These OMVs, approximately 100 nm in diameter, contain multiple virulence-associated outer membrane proteins including the adhesin Ail, the F1 outer fimbrial antigen, and the protease Pla. We found that OMVs released by Y. pestis contain catalytically active Pla that is competent for plasminogen activation and α2-antiplasmin degradation. The abundance of OMV-associated proteins released by Y. pestis is significantly elevated at 37 °C compared to 26 °C and is increased in response to membrane stress and mutations in RseA, Hfq, and the major Braun lipoprotein (Lpp). In addition, we show that Y. pestis OMVs are able to bind to components of the extracellular matrix such as fibronectin and laminin. These data suggest that Y. pestis may produce OMVs during mammalian infection and we propose that dispersal of Pla via OMV release may influence the outcome of infection through interactions with Pla substrates such as plasminogen and Fas ligand.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Peste/microbiología , Vesículas Secretoras/metabolismo , Factores de Virulencia/metabolismo , Yersinia pestis/patogenicidad , Cromatografía Liquida , Fibronectinas/metabolismo , Humanos , Laminina/metabolismo , Activadores Plasminogénicos/metabolismo , Proteómica , Espectrometría de Masas en Tándem , Virulencia
5.
Cell Immunol ; 290(1): 120-30, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24978612

RESUMEN

Although glucocorticoids are well known for their capacity to suppress the immune response, glucocorticoids can also promote immune responsiveness. It was the purpose of this investigation to evaluate the molecular basis for this apparent dichotomous immunologic effect. Glucocorticoid treatment of natural killer cells (NK) was shown to reduce NK cell cytolytic activity by reduction of histone promoter acetylation for perforin and granzyme B, which corresponded with reduced mRNA and protein for each. In contrast, glucocorticoid treatment increased histone acetylation at regulatory regions for interferon gamma and IL-6, as well as chromatin accessibility for each. This increase in histone acetylation was associated with increased proinflammatory cytokine mRNA and protein production upon cellular stimulation. These immunologic effects were evident at the level of the individual cell and demonstrate glucocorticoids to epigenetically reduce NK cell cytolytic activity while at the same time to prime NK cells for proinflammatory cytokine production.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Glucocorticoides/farmacología , Histonas/metabolismo , Células Asesinas Naturales/inmunología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Acetilación , Línea Celular Tumoral , Cromatina/genética , Granzimas/genética , Granzimas/metabolismo , Humanos , Inflamación/inmunología , Interferón gamma/genética , Interleucina-6/genética , Perforina/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Regiones Promotoras Genéticas , ARN Mensajero/biosíntesis , Receptores de Citocinas/biosíntesis , Transducción de Señal/efectos de los fármacos , Factor de Transcripción AP-1/biosíntesis , Factor de Transcripción ReIA/biosíntesis
6.
J Bacteriol ; 195(23): 5402-12, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24097942

RESUMEN

Biofilm formation by Vibrio fischeri is a complex process that requires multiple regulators. One such regulator, the NtrC-like response regulator SypG, controls biofilm formation and host colonization by V. fischeri via its impact on transcription of the symbiosis polysaccharide (syp) locus. SypG is predicted to activate syp transcription by binding to the syp enhancer (SE), a conserved sequence located upstream of four syp promoters. In this study, we performed an in-depth analysis of the sequences necessary for SypG to promote syp transcription and biofilm formation. We found that the SE sequence is necessary for SypG-mediated syp transcription, identified individual bases necessary for efficient activation, and determined that SypG is able to bind to syp promoter regions. We also identified SE sequences outside the syp locus and established that SypG recognizes these sequences as well. Finally, deletion of the SE sequence upstream of sypA led to defects in both biofilm formation and host colonization that could be restored by reintroducing the SE sequence into its native location in the chromosome. This work thus fills in critical gaps in knowledge of the Syp regulatory circuit by demonstrating a role for the SE sequence in SypG-dependent control of biofilm formation and host colonization and by identifying new putative regulon members. It may also provide useful insights into other bacteria, such as Vibrio vulnificus and Vibrio parahaemolyticus, that have syp-like loci and conserved SE sequences.


Asunto(s)
Aliivibrio fischeri/fisiología , Biopelículas/crecimiento & desarrollo , Elementos de Facilitación Genéticos/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Transcripción Genética/fisiología , Activación Transcripcional/fisiología , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Elementos de Facilitación Genéticos/genética , Regiones Promotoras Genéticas , ARN Polimerasa Sigma 54/genética , ARN Polimerasa Sigma 54/metabolismo
7.
Cell Immunol ; 275(1-2): 80-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22483981

RESUMEN

Physical and psychological stressors reduce natural killer cell function. This reduction in cellular function results from stress-induced release of glucocorticoids. Glucocorticoids act upon natural killer cells to deacetylate and transrepress immune response genes through epigenetic processes. However, other than the glucocorticoid receptor, the proteins that participate in this process are not well described in natural killer cells. The purpose of this study was to identify the proteins associated with the glucocorticoid receptor that are likely epigenetic participants in this process. Treatment of natural killer cells with the synthetic glucocorticoid, dexamethasone, produced a significant time dependent reduction in natural killer cell activity as early as 8h post treatment. This reduction in natural killer cell activity was preceded by nuclear localization of the glucocorticoid receptor with histone deacetylase 1 and the corepressor, SMRT. Other class I histone deacetylases were not associated with the glucocorticoid receptor nor was the corepressor NCoR. These results demonstrate histone deacetylase 1 and SMRT to associate with the ligand activated glucocorticoid receptor within the nuclei of natural killer cells and to be the likely participants in the histone deacetylation and transrepression that accompanies glucocorticoid mediated reductions in natural killer cell function.


Asunto(s)
Proteínas Co-Represoras/inmunología , Histona Desacetilasas/inmunología , Células Asesinas Naturales/inmunología , Receptores de Glucocorticoides/inmunología , Línea Celular Tumoral , Dexametasona/farmacología , Humanos , Células Asesinas Naturales/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...