Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(3): 109320, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38487018

RESUMEN

Synaptic plasticity in the hippocampus underlies episodic memory formation, with dorsal hippocampus being instrumental for spatial memory whereas ventral hippocampus is crucial for emotional learning. Here, we studied how GABAergic inhibition regulates physiologically relevant low repeat spike timing-dependent LTP (t-LTP) at Schaffer collateral-CA1 synapses along the dorsoventral hippocampal axis. We used two t-LTP protocols relying on only 6 repeats of paired spike-firing in pre- and postsynaptic cells within 10 s that differ in postsynaptic firing patterns. GABAA receptor mechanisms played a greater role in blocking 6× 1:1 t-LTP that recruits single postsynaptic action potentials. 6× 1:4 t-LTP that depends on postsynaptic burst-firing unexpectedly required intact GABAB receptor signaling. The magnitude of both t-LTP-forms decreased along the dorsoventral axis, despite increasing excitability and basal synaptic strength in this direction. This suggests that GABAergic inhibition contributes to the distinct roles of dorsal and ventral hippocampus in memory formation.

2.
Cereb Cortex ; 32(8): 1682-1703, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34498663

RESUMEN

High-frequency stimulation induced long-term potentiation (LTP) and low-frequency stimulation induced LTD are considered as cellular models of memory formation. Interestingly, spike timing-dependent plasticity (STDP) can induce equally robust timing-dependent LTP (t-LTP) and t-LTD in response to low frequency repeats of coincident action potential (AP) firing in presynaptic and postsynaptic cells. Commonly, STDP paradigms relying on 25-100 repeats of coincident AP firing are used to elicit t-LTP or t-LTD, but the minimum number of repeats required for successful STDP is barely explored. However, systematic investigation of physiologically relevant low repeat STDP paradigms is of utmost importance to explain learning mechanisms in vivo. Here, we examined low repeat STDP at Schaffer collateral-CA1 synapses by pairing one presynaptic AP with either one postsynaptic AP (1:1 t-LTP), or a burst of 4 APs (1:4 t-LTP) and found 3-6 repeats to be sufficient to elicit t-LTP. 6× 1:1 t-LTP required postsynaptic Ca2+ influx via NMDARs and L-type VGCCs and was mediated by increased presynaptic glutamate release. In contrast, 1:4 t-LTP depended on postsynaptic metabotropic GluRs and ryanodine receptor signaling and was mediated by postsynaptic insertion of AMPA receptors. Unexpectedly, both 6× t-LTP variants were strictly dependent on activation of postsynaptic Ca2+-permeable AMPARs but were differentially regulated by dopamine receptor signaling. Our data show that synaptic changes induced by only 3-6 repeats of mild STDP stimulation occurring in ≤10 s can take place on time scales observed also during single trial learning.


Asunto(s)
Calcio , Potenciación a Largo Plazo , Calcio/metabolismo , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Receptores AMPA , Receptores Sensibles al Calcio , Sinapsis/fisiología
3.
Sci Rep ; 11(1): 8535, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879805

RESUMEN

BDNF plays a crucial role in the regulation of synaptic plasticity. It is synthesized as a precursor (proBDNF) that can be proteolytically cleaved to mature BDNF (mBDNF). Previous studies revealed a bidirectional mode of BDNF actions, where long-term potentiation (LTP) was mediated by mBDNF through tropomyosin related kinase (Trk) B receptors whereas long-term depression (LTD) depended on proBDNF/p75 neurotrophin receptor (p75NTR) signaling. While most experimental evidence for this BDNF dependence of synaptic plasticity in the hippocampus was derived from Schaffer collateral (SC)-CA1 synapses, much less is known about the mechanisms of synaptic plasticity, in particular LTD, at hippocampal mossy fiber (MF) synapses onto CA3 neurons. Since proBDNF and mBDNF are expressed most abundantly at MF-CA3 synapses in the rodent brain and we had shown previously that MF-LTP depends on mBDNF/TrkB signaling, we now explored the role of proBDNF/p75NTR signaling in MF-LTD. Our results show that neither acute nor chronic inhibition of p75NTR signaling impairs MF-LTD, while short-term plasticity, in particular paired-pulse facilitation, at MF-CA3 synapses is affected by a lack of functional p75NTR signaling. Furthermore, MF-CA3 synapses showed normal LTD upon acute inhibition of TrkB receptor signaling. Nonetheless, acute inhibition of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of both intracellular and extracellular proBDNF cleavage, impaired MF-LTD. This seems to indicate that LTD at MF-CA3 synapses involves BDNF, however, MF-LTD does not depend on p75NTRs. Altogether, our experiments demonstrate that p75NTR signaling is not warranted for all glutamatergic synapses but rather needs to be checked separately for every synaptic connection.


Asunto(s)
Región CA3 Hipocampal/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Fibras Musgosas del Hipocampo/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA3 Hipocampal/patología , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Fibras Musgosas del Hipocampo/patología , Plasticidad Neuronal/fisiología , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal
4.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573114

RESUMEN

Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder characterized by progressive and irreversible cognitive decline, with no disease-modifying therapy until today. Spike timing-dependent plasticity (STDP) is a Hebbian form of synaptic plasticity, and a strong candidate to underlie learning and memory at the single neuron level. Although several studies reported impaired long-term potentiation (LTP) in the hippocampus in AD mouse models, the impact of amyloid-ß (Aß) pathology on STDP in the hippocampus is not known. Using whole cell patch clamp recordings in CA1 pyramidal neurons of acute transversal hippocampal slices, we investigated timing-dependent (t-) LTP induced by STDP paradigms at Schaffer collateral (SC)-CA1 synapses in slices of 6-month-old adult APP/PS1 AD model mice. Our results show that t-LTP can be induced even in fully developed adult mice with different and even low repeat STDP paradigms. Further, adult APP/PS1 mice displayed intact t-LTP induced by 1 presynaptic EPSP paired with 4 postsynaptic APs (6× 1:4) or 1 presynaptic EPSP paired with 1 postsynaptic AP (100× 1:1) STDP paradigms when the position of Aß plaques relative to recorded CA1 neurons in the slice were not considered. However, when Aß plaques were live stained with the fluorescent dye methoxy-X04, we observed that in CA1 neurons with their somata <200 µm away from the border of the nearest Aß plaque, t-LTP induced by 6× 1:4 stimulation was significantly impaired, while t-LTP was unaltered in CA1 neurons >200 µm away from plaques. Treatment of APP/PS1 mice with the anti-inflammatory drug fingolimod that we previously showed to alleviate synaptic deficits in this AD mouse model did not rescue the impaired t-LTP. Our data reveal that overexpression of APP and PS1 mutations in AD model mice disrupts t-LTP in an Aß plaque distance-dependent manner, but cannot be improved by fingolimod (FTY720) that has been shown to rescue conventional LTP in CA1 of APP/PS1 mice.


Asunto(s)
Enfermedad de Alzheimer/patología , Región CA1 Hipocampal/patología , Potenciación a Largo Plazo/fisiología , Placa Amiloide/patología , Sinapsis/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiopatología , Modelos Animales de Enfermedad , Clorhidrato de Fingolimod/administración & dosificación , Humanos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Mutación , Técnicas de Placa-Clamp , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/genética , Placa Amiloide/fisiopatología , Presenilina-1/genética , Células Piramidales/efectos de los fármacos , Células Piramidales/patología , Células Piramidales/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
5.
Sci Rep ; 10(1): 21453, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293595

RESUMEN

Experimental evidence in rodents and humans suggests that long-term memory consolidation can be enhanced by the exploration of a novel environment presented during a vulnerable early phase of consolidation. This memory enhancing effect (behavioral tagging) is caused by dopaminergic and noradrenergic neuromodulation of hippocampal plasticity processes. In translation from animal to human research, we investigated whether behavioral tagging with novelty can be used to tackle memory problems observed in children and adolescents with attention-deficit/hyperactivity disorder (ADHD). 34 patients with ADHD and 34 typically developing participants (age 9-15 years) explored either a previously familiarized or a novel virtual environment 45 min after they had learned a list of 20 words. Participants took a free recall test both immediately after learning the word list and after 24 h. Patients who explored a familiar environment showed significantly impaired memory consolidation compared to typically developing peers. Exploration of a novel environment led to significantly better memory consolidation in children and adolescents with ADHD. However, we did not observe a beneficial effect of novel environment exploration in typically developing participants. Our data rather suggested that increased exploration of a novel environment as well as higher feelings of virtual immersion compromised memory performance in typically developing children and adolescents, which was not the case for patients with ADHD. We propose that behavioral tagging with novel virtual environments is a promising candidate to overcome ADHD related memory problems. Moreover, the discrepancy between children and adolescents with and without ADHD suggests that behavioral tagging might only be able to improve memory consolidation for weakly encoded information.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/terapia , Consolidación de la Memoria , Terapia de Exposición Mediante Realidad Virtual , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Niño , Conducta Exploratoria , Femenino , Humanos , Masculino , Terapia de Exposición Mediante Realidad Virtual/métodos
6.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255764

RESUMEN

Therapeutic approaches providing effective medication for Alzheimer's disease (AD) patients after disease onset are urgently needed. Previous studies in AD mouse models suggested that physical exercise or changed lifestyle can delay AD-related synaptic and memory dysfunctions when treatment started in juvenile animals long before onset of disease symptoms, while a pharmacological treatment that can reverse synaptic and memory deficits in AD mice was thus far not identified. Repurposing food and drug administration (FDA)-approved drugs for treatment of AD is a promising way to reduce the time to bring such medication into clinical practice. The sphingosine-1 phosphate analog fingolimod (FTY720) was approved recently for treatment of multiple sclerosis patients. Here, we addressed whether fingolimod rescues AD-related synaptic deficits and memory dysfunction in an amyloid precursor protein/presenilin-1 (APP/PS1) AD mouse model when medication starts after onset of symptoms (at five months). Male mice received intraperitoneal injections of fingolimod for one to two months starting at five to six months. This treatment rescued spine density as well as long-term potentiation in hippocampal cornu ammonis-1 (CA1) pyramidal neurons, that were both impaired in untreated APP/PS1 animals at six to seven months of age. Immunohistochemical analysis with markers of microgliosis (ionized calcium-binding adapter molecule 1; Iba1) and astrogliosis (glial fibrillary acid protein; GFAP) revealed that our fingolimod treatment regime strongly down regulated neuroinflammation in the hippocampus and neocortex of this AD model. These effects were accompanied by a moderate reduction of Aß accumulation in hippocampus and neocortex. Our results suggest that fingolimod, when applied after onset of disease symptoms in an APP/PS1 mouse model, rescues synaptic pathology that is believed to underlie memory deficits in AD mice, and that this beneficial effect is mediated via anti-neuroinflammatory actions of the drug on microglia and astrocytes.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Precursor de Proteína beta-Amiloide/genética , Inflamación/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Presenilina-1/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Antiinflamatorios/farmacología , Astrocitos/metabolismo , Astrocitos/patología , Modelos Animales de Enfermedad , Clorhidrato de Fingolimod/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Sinapsis/genética , Sinapsis/patología
7.
Mol Neurobiol ; 56(10): 6833-6855, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30929164

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a secreted messenger molecule that is crucial for neuronal function and induction of synaptic plasticity. Although altered availability of BDNF underlies many neurological deficits and neurodegenerative disorders, secretion dynamics of endogenous BDNF are unexplored. We generated a BDNF-GFP knock-in (KiBE) mouse, in which GFP-labeled BDNF is expressed under the control of the unaltered endogenous mouse BDNF gene regulatory elements. This KiBE mouse model enables for the first time live cell imaging analysis of endogenous BDNF dynamics. We show that BDNF-GFP release and biological activity in vivo are unaffected by the GFP tag, since homozygous KiBE mice, which lack wild-type BDNF, are healthy and have a normal life expectancy. STED superresolution microscopy shows that 70% of BDNF-GFP vesicles in KiBE mouse neurites are localized in dendrites, being typically 200 nm away from synaptic release sites. Live cell imaging in hippocampal slices also reveals prominent targeting of endogenous BDNF-GFP vesicles to dendrites. Fusion pore opening and cargo release of dendritic BDNF vesicles start within 30 s after a strong depolarizing stimulus and continue for > 100 s thereafter, revealing an astonishingly delayed and prolonged release of endogenous BDNF.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dendritas/metabolismo , Exocitosis , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Axones/metabolismo , Células Cultivadas , Cromosomas de los Mamíferos/genética , Marcación de Gen , Genoma , Hipocampo/metabolismo , Ratones
8.
PLoS Comput Biol ; 15(4): e1006975, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31017891

RESUMEN

Across the mammalian nervous system, neurotrophins control synaptic plasticity, neuromodulation, and neuronal growth. The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) is known to promote structural and functional synaptic plasticity in the hippocampus, the cerebral cortex, and many other brain areas. In recent years, a wealth of data has been accumulated revealing the paramount importance of BDNF for neuronal function. BDNF signaling gives rise to multiple complex signaling pathways that mediate neuronal survival and differentiation during development, and formation of new memories. These different roles of BDNF for neuronal function have essential consequences if BDNF signaling in the brain is reduced. Thus, BDNF knock-out mice or mice that are deficient in BDNF receptor signaling via TrkB and p75 receptors show deficits in neuronal development, synaptic plasticity, and memory formation. Accordingly, BDNF signaling dysfunctions are associated with many neurological and neurodegenerative conditions including Alzheimer's and Huntington's disease. However, despite the widespread implications of BDNF-dependent signaling in synaptic plasticity in healthy and pathological conditions, the interplay of the involved different biochemical pathways at the synaptic level remained mostly unknown. In this paper, we investigated the role of BDNF/TrkB signaling in spike-timing dependent plasticity (STDP) in rodent hippocampus CA1 pyramidal cells, by implementing the first subcellular model of BDNF regulated, spike timing-dependent long-term potentiation (t-LTP). The model is based on previously published experimental findings on STDP and accounts for the observed magnitude, time course, stimulation pattern and BDNF-dependence of t-LTP. It allows interpreting the main experimental findings concerning specific biomolecular processes, and it can be expanded to take into account more detailed biochemical reactions. The results point out a few predictions on how to enhance LTP induction in such a way to rescue or improve cognitive functions under pathological conditions.


Asunto(s)
Potenciales de Acción/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Potenciación a Largo Plazo/fisiología , Modelos Neurológicos , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Biología Computacional , Hipocampo/citología , Masculino , Memoria/fisiología , Ratones , Ratones Noqueados , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Ratas Wistar , Transducción de Señal/fisiología
9.
Front Cell Neurosci ; 13: 562, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998077

RESUMEN

The cholinergic system plays an essential role in central respiratory control, but the underlying mechanisms remain elusive. We used whole-cell recordings in brainstem slices from juvenile mice expressing enhanced green fluorescent protein (EGFP) under the control of the glycine transporter type 2 (GlyT2) promoter, to examine muscarinic modulation of morphologically identified glycinergic neurons in the preBötzinger complex (preBötC), an area critical for central inspiratory rhythm generation. Biocytin-filled reconstruction of glycinergic neurons revealed that the majority of them had few primary dendrites and had axons arborized within their own dendritic field. Few glycinergic neurons had axon collaterals extended towards the premotor/motor areas or ran towards the contralateral preBötC, and had more primary dendrites and more compact dendritic trees. Spontaneously active glycinergic neurons fired regular spikes, or less frequently in a "burst-like" pattern at physiological potassium concentration. Muscarine suppressed firing in the majority of regular spiking neurons via M2 receptor activation while enhancing the remaining neurons through M1 receptors. Interestingly, rhythmic bursting was augmented by muscarine in a small group of glycinergic neurons. In contrast to its heterogeneous modulation of glycinergic neuronal excitability, muscarine generally depressed inhibitory and excitatory synaptic inputs onto both glycinergic and non-glycinergic preBötC neurons, with a stronger effect on inhibitory input. Notably, presynaptic muscarinic attenuation of excitatory synaptic input was dependent on M1 receptors in glycinergic neurons and on M2 receptors in non-glycinergic neurons. Additional field potential recordings of excitatory synaptic potentials in the M2 receptor knockout mice indicate that glycinergic and non-glycinergic neurons contribute equally to the general suppression by muscarine of excitatory activity in preBötC circuits. In conclusion, our data show that preBötC glycinergic neurons are morphologically heterogeneous, and differ in the properties of synaptic transmission and muscarinic modulation in comparison to non-glycinergic neurons. The dominant and cell-type-specific muscarinic inhibition of synaptic neurotransmission and spiking may contribute to central respiratory disturbances in high cholinergic states.

10.
Cell Tissue Res ; 373(3): 711-727, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29470647

RESUMEN

The catecholamine dopamine plays an important role in hippocampus-dependent plasticity and related learning and memory processes. Dopamine secretion in the hippocampus is activated by, e.g., salient or novel stimuli, thereby helping to establish and to stabilize hippocampus-dependent memories. Disturbed dopaminergic function in the hippocampus leads to severe pathophysiological conditions. While the role and importance of dopaminergic modulation of hippocampal networks have been unequivocally proven, there is still a lack of detailed molecular and cellular mechanistic understanding of how dopamine orchestrates these hippocampal processes. In this chapter of the special issue "Hippocampal structure and function," we will discuss the current understanding of dopaminergic modulation of basal synaptic transmission and long-lasting, activity-dependent potentiation or depression.


Asunto(s)
Hipocampo/fisiología , Receptores Dopaminérgicos/metabolismo , Animales , Axones/metabolismo , Conducta Animal , Depresión , Dopamina/metabolismo , Hipocampo/metabolismo , Humanos , Memoria/fisiología , Ratones , Ratones Noqueados , Plasticidad Neuronal/fisiología , Ratas , Sinapsis/metabolismo , Transmisión Sináptica
11.
Artículo en Inglés | MEDLINE | ID: mdl-28352224

RESUMEN

Understanding learning and memory mechanisms is an important goal in neuroscience. To gain insights into the underlying cellular mechanisms for memory formation, synaptic plasticity processes are studied with various techniques in different brain regions. A valid model to scrutinize different ways to enhance or decrease synaptic transmission is recording of long-term potentiation (LTP) or long-term depression (LTD). At the single cell level, spike timing-dependent plasticity (STDP) protocols have emerged as a powerful tool to investigate synaptic plasticity with stimulation paradigms that also likely occur during memory formation in vivo. Such kind of plasticity can be induced by different STDP paradigms with multiple repeat numbers and stimulation patterns. They subsequently recruit or activate different molecular pathways and neuromodulators for induction and expression of STDP. Dopamine (DA) and brain-derived neurotrophic factor (BDNF) have been recently shown to be important modulators for hippocampal STDP at Schaffer collateral (SC)-CA1 synapses and are activated exclusively by distinguishable STDP paradigms. Distinct types of parallel synaptic plasticity in a given neuron depend on specific subcellular molecular prerequisites. Since the basal and apical dendrites of CA1 pyramidal neurons are known to be heterogeneous, and distance-dependent dendritic gradients for specific receptors and ion channels are described, the dendrites might provide domain specific locations for multiple types of synaptic plasticity in the same neuron. In addition to the distinct signaling and expression mechanisms of various types of LTP and LTD, activation of these different types of plasticity might depend on background brain activity states. In this article, we will discuss some ideas why multiple forms of synaptic plasticity can simultaneously and independently coexist and can contribute so effectively to increasing the efficacy of memory storage and processing capacity of the brain. We hypothesize that resolving the subcellular location of t-LTP and t-LTD mechanisms that are regulated by distinct neuromodulator systems will be essential to reach a more cohesive understanding of synaptic plasticity in memory formation.

12.
Neuron ; 86(4): 1041-1054, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25959732

RESUMEN

Timing-dependent LTP (t-LTP) is a physiologically relevant type of synaptic plasticity that results from repeated sequential firing of action potentials (APs) in pre- and postsynaptic neurons. t-LTP can be observed in vivo and is proposed to be a cellular correlate of memory formation. While brain-derived neurotrophic factor (BDNF) is essential to high-frequency stimulation-induced LTP in many brain areas, the role of BDNF in t-LTP is largely unknown. Here, we demonstrate a striking change in the expression mechanism of t-LTP in CA1 of the hippocampus following two distinct modes of synaptic activation. Single postsynaptic APs paired with presynaptic stimulation activated a BDNF-independent canonical t-LTP. In contrast, a theta burst of postsynaptic APs preceded by presynaptic stimulation elicited BDNF-dependent postsynaptic t-LTP that relied on postsynaptic BDNF secretion. This suggests that BDNF release during burst-like patterns of activity typically observed in vivo may play a crucial role during memory formation.


Asunto(s)
Potenciales de Acción/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA1 Hipocampal/metabolismo , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Neuronas/fisiología , Animales , Animales Recién Nacidos , Masculino , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Potenciales Sinápticos/fisiología , Transmisión Sináptica/fisiología
13.
J Neurosci ; 35(8): 3298-311, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25716831

RESUMEN

The ß-secretase BACE1 is widely known for its pivotal role in the amyloidogenic pathway leading to Alzheimer's disease, but how its action on transmembrane proteins other than the amyloid precursor protein affects the nervous system is only beginning to be understood. We report here that BACE1 regulates neuronal excitability through an unorthodox, nonenzymatic interaction with members of the KCNQ (Kv7) family that give rise to the M-current, a noninactivating potassium current with slow kinetics. In hippocampal neurons from BACE1(-/-) mice, loss of M-current enhanced neuronal excitability. We relate the diminished M-current to the previously reported epileptic phenotype of BACE1-deficient mice. In HEK293T cells, BACE1 amplified reconstituted M-currents, altered their voltage dependence, accelerated activation, and slowed deactivation. Biochemical evidence strongly suggested that BACE1 physically associates with channel proteins in a ß-subunit-like fashion. Our results establish BACE1 as a physiologically essential constituent of regular M-current function and elucidate a striking new feature of how BACE1 impacts on neuronal activity in the intact and diseased brain.


Asunto(s)
Potenciales de Acción , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Hipocampo/metabolismo , Canales de Potasio KCNQ/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Células Cultivadas , Femenino , Células HEK293 , Hipocampo/citología , Hipocampo/fisiología , Humanos , Canales de Potasio KCNQ/genética , Masculino , Ratones , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Células Piramidales/metabolismo , Células Piramidales/fisiología
14.
Neuropharmacology ; 76 Pt C: 610-27, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23791959

RESUMEN

Overwhelming evidence collected since the early 1990's strongly supports the notion that BDNF is among the key regulators of synaptic plasticity in many areas of the mammalian central nervous system. Still, due to the extremely low expression levels of endogenous BDNF in most brain areas, surprisingly little data i) pinpointing pre- and postsynaptic release sites, ii) unraveling the time course of release, and iii) elucidating the physiological levels of synaptic activity driving this secretion are available. Likewise, our knowledge regarding pre- and postsynaptic effects of endogenous BDNF at the single cell level in mediating long-term potentiation still is sparse. Thus, our review will discuss the data currently available regarding synaptic BDNF secretion in response to physiologically relevant levels of activity, and will discuss how endogenously secreted BDNF affects synaptic plasticity, giving a special focus on spike timing-dependent types of LTP and on mossy fiber LTP. We will attempt to open up perspectives how the remaining challenging questions regarding synaptic BDNF release and action might be addressed by future experiments. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Plasticidad Neuronal/fisiología , Densidad Postsináptica/metabolismo , Terminales Presinápticos/metabolismo , Animales
15.
Neuropharmacology ; 71: 247-54, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23587649

RESUMEN

Brain-derived neurotrophic factor (BDNF) signaling via TrkB crucially regulates synaptic plasticity in the brain. Although BDNF is abundant at hippocampal mossy fiber (MF) synapses, which critically contribute to hippocampus dependent memory, its role in MF synaptic plasticity (long-term potentiation, LTP) remained largely unclear. Using field potential recordings in CA3 of adult heterozygous BDNF knockout (ko, BDNF+/-) mice we observed impaired (∼50%) NMDAR-independent MF-LTP. In contrast to MF synapses, LTP at neighboring associative/commissural (A/C) fiber synapses remained unaffected. To exclude that impaired MF-LTP in BDNF+/- mice was due to developmental changes in response to chronically reduced BDNF levels, and to prove the importance of acute availability of BDNF in MF-LTP, we also tested effects of acute interference with BDNF/TrkB signaling. Inhibition of TrkB tyrosine kinase signaling with k252a, or with the selective BDNF scavenger TrkB-Fc, both inhibited MF-LTP to the same extent as observed in BDNF+/- mice. Basal synaptic transmission, short-term plasticity, and synaptic fatigue during LTP induction were not significantly altered by treatment with k252a or TrkB-Fc, or by chronic BDNF reduction in BDNF+/- mice. Since the acute interference with BDNF-signaling did not completely block MF-LTP, our results provide evidence that an additional mechanism besides BDNF induced TrkB signaling contributes to this type of LTP. Our results prove for the first time a mechanistic action of acute BDNF/TrkB signaling in presynaptic expression of MF-LTP in adult hippocampus.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA3 Hipocampal/metabolismo , Potenciación a Largo Plazo , Fibras Musgosas del Hipocampo/metabolismo , Receptor trkB/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Factor Neurotrófico Derivado del Encéfalo/genética , Región CA3 Hipocampal/efectos de los fármacos , Heterocigoto , Humanos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musgosas del Hipocampo/efectos de los fármacos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptor trkB/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Factores de Tiempo
16.
Front Neurosci ; 7: 25, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23508132

RESUMEN

Long-term potentiation (LTP) and long-term depression (LTD) are generally assumed to be cellular correlates for learning and memory. Different types of LTP induction protocols differing in severity of stimulation can be distinguished in CA1 of the hippocampus. To better understand signaling mechanisms and involvement of neuromodulators such as dopamine (DA) in synaptic plasticity, less severe and more physiological low frequency induction protocols should be used. In the study which is reviewed here, critical determinants of spike timing-dependent plasticity (STDP) at hippocampal CA3-CA1 synapses were investigated. We found that DA via D1 receptor signaling, but not adrenergic signaling activated by the ß-adrenergic agonist isoproterenol, is important for successful expression of STDP at CA3-CA1 synapses. The DA effect on STDP is paralleled by changes in spike firing properties, thereby changing intrinsic excitability of postsynaptic CA1 neurons, and gating STDP. Whereas ß-adrenergic signaling also leads to a similar (but not identical) regulation of firing pattern, it does not enable STDP. In this focused review we will discuss the current literature on dopaminergic modulation of LTP in CA1, with a special focus on timing dependent (t-)LTP, and we will suggest possible reasons for the selective gating of STDP by DA [but not noradrenaline (NA)] in CA1.

17.
Artículo en Inglés | MEDLINE | ID: mdl-22065958

RESUMEN

Spike timing-dependent plasticity (STDP) is a cellular model of Hebbian synaptic plasticity which is believed to underlie memory formation. In an attempt to establish a STDP paradigm in CA1 of acute hippocampal slices from juvenile rats (P15-20), we found that changes in excitability resulting from different slice preparation protocols correlate with the success of STDP induction. Slice preparation with sucrose containing ACSF prolonged rise time, reduced frequency adaptation, and decreased latency of action potentials in CA1 pyramidal neurons compared to preparation in conventional ASCF, while other basal electrophysiological parameters remained unaffected. Whereas we observed prominent timing-dependent long-term potentiation (t-LTP) to 171 ± 10% of controls in conventional ACSF, STDP was absent in sucrose prepared slices. This sucrose-induced STDP deficit could not be rescued by stronger STDP paradigms, applying either more pre- and/or postsynaptic stimuli, or by a higher stimulation frequency. Importantly, slice preparation with sucrose containing ACSF did not eliminate theta-burst stimulation induced LTP in CA1 in field potential recordings in our rat hippocampal slices. Application of dopamine (for 10-20 min) to sucrose prepared slices completely rescued t-LTP and recovered action potential properties back to levels observed in ACSF prepared slices. Conversely, acute inhibition of D1 receptor signaling impaired t-LTP in ACSF prepared slices. No similar restoring effect for STDP as seen with dopamine was observed in response to the ß-adrenergic agonist isoproterenol. ELISA measurements demonstrated a significant reduction of endogenous dopamine levels (to 61.9 ± 6.9% of ACSF values) in sucrose prepared slices. These results suggest that dopamine signaling is involved in regulating the efficiency to elicit STDP in CA1 pyramidal neurons.

18.
Brain Res ; 1391: 14-23, 2011 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21458431

RESUMEN

BDNF and nitric oxide signaling both contribute to long-term potentiation (LTP) at glutamatergic synapses, but to date, few studies analyzed the interaction of both signaling cascades in the same synaptic pathway. Here we addressed the question whether the residual LTP in the CA1 region of hippocampal slices from heterozygous BDNF knockout mice (BDNF⁺/⁻) is dependent on nitric oxide (NO) signaling. Extracellular recording of synaptic field potentials elicited by presynaptic Schaffer collateral stimulation was performed in the CA1 region of hippocampal slices of 4- to 6-week-old mice, and LTP was induced by a theta burst stimulation protocol. Application of the nitric oxide inhibitor L-NAME (200 µM) strongly inhibited LTP by 70% in wildtype animals. This inhibition of LTP was not a consequence of altered basal synaptic properties. In CA1 of BDNF⁺/⁻ mice, stimulated with the same theta burst protocol, LTP was reduced by 50% as compared to wildtype animals. This impairment in the expression of LTP in BDNF⁺/⁻ mice did not result from an increased synaptic fatigue. The residual LTP in BDNF⁺/⁻ was not further reduced by preincubation of slices with L-NAME. These results suggest that BDNF and NO share overlapping intracellular signaling cascades to mediate LTP in CA1, and part of their signaling cascades are most likely arranged consecutively in the signaling pathway mediating LTP.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/deficiencia , Región CA1 Hipocampal/citología , Potenciación a Largo Plazo/genética , Óxido Nítrico Sintasa/metabolismo , Animales , Animales Recién Nacidos , Biofisica , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NG-Nitroarginina Metil Éster/farmacología
19.
Acta Astronaut ; 50(4): 261-6, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11829019

RESUMEN

In man, altered gravity may lead to a vestibular dysfunction causing space motion sickness. A hypothesis was developed, according to which asymmetric inner ear statoliths might be the morphological basis of space sickness. The animal model, fish, revealed further information: inner ear "stone" (otolith) growth is dependent on the amplitude and the direction of gravity, regulated by a negative feedback mechanism. The present study was focused on the question, where the regulation centre of adaptive otolith growth may be situated. Therefore, the vestibular nerve was unilaterally transected in neonate swordtail fish (Xiphophorus helleri). As growth marker, the calcium tracer alizarin-complexone was used. It was found that otolith growth had ceased on the operated head sides indicating that the brain is significantly involved in regulating otolith growth. About 2 weeks after nerve transection, otoliths had regained normal growth, probably due to nerve regeneration. Concerning fish, it has now to be tested, if this regeneration is affected by altered gravity, e.g. in a long-term experiment on the International Space Station. Regarding mammals, it has to be proved if asymmetric statoliths are the basis of kinetosis and whether or not the mammalian brain has an effect on statolith growth in the course of compensating altered gravity.


Asunto(s)
Ciprinodontiformes/fisiología , Modelos Animales de Enfermedad , Membrana Otolítica/crecimiento & desarrollo , Mareo por Movimiento Espacial/etiología , Nervio Vestibular/fisiología , Animales , Antraquinonas , Axotomía , Ciprinodontiformes/crecimiento & desarrollo , Densitometría , Colorantes Fluorescentes , Regeneración Nerviosa , Membrana Otolítica/fisiología , Membrana Otolítica/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA