Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 35(10): ar133, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39196658

RESUMEN

Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. This study evaluates the effect of overexpression of wild-type versus functional mutants of MRTF-A on migration and invasion of breast cancer (BC) cells. Our studies indicate that SRF's interaction is critical for MRTF-A-induced promotion of both two-dimensional and three-dimensional cell migration, while the SAP-domain function is important selectively for three-dimensional cell migration. Increased MRTF-A activity is associated with more effective membrane protrusion, a phenotype that is attributed predominantly to SRF's interaction with MRTF. We demonstrate formin-family protein mDia2 as an important mediator of MRTF-stimulated actin polymerization at the leading edge and cell migration. Multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical BC specimens further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells and enrichment of MRTF-SRF gene signature in pair-matched distant metastases versus primary tumors. In conclusion, this study establishes a novel mechanism of MRTF-dependent regulation of cell migration and provides evidence for the association between MRTF activity and increased malignancy in human BC, justifying future development of specific small molecule inhibitors of the MRTF-SRF transcriptional complex as potential therapeutic agents in BC.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Forminas , Transactivadores , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Forminas/metabolismo , Femenino , Transactivadores/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Factor de Respuesta Sérica/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética
2.
bioRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38187641

RESUMEN

Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. This study evaluates the effect of overexpression of wild-type vs functional mutants of MRTF-A on migration and invasion of breast cancer (BC) cells. Our studies indicate that SRF's interaction is critical for MRTF-A-induced promotion of both 2D and 3D cell migration, while the SAP-domain function is important selectively for 3D cell migration. Increased MRTF-A activity is associated with more effective membrane protrusion, a phenotype that is attributed predominantly to SRF's interaction of MRTF. We demonstrate formin-family protein mDia2 as an important mediator of MRTF-stimulated actin polymerization at the leading edge and cell migration. Multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical BC specimens further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells and enrichment of MRTF-SRF gene signature in pair-matched distant metastases vs primary tumors. In conclusion, this study establishes a novel mechanism of MRTF-dependent regulation of cell migration and provides evidence for the association between MRTF activity and increased malignancy in human breast cancer, justifying future development of a specific small molecule inhibitor of the MRTF-SRF transcriptional complex as a potential therapeutic agent in breast cancer. SIGNIFICANCE: Actin cytoskeletal dysregulation gives rise to metastatic dissemination of cancer cells. This study mechanistically investigates the impact of specific functional disruption of MRTF (a transcriptional co-factor of SRF) on breast cancer cell migration.This study establishes a novel mechanism linking mDia2 to MRTF-dependent regulation of cell migration and provides clinical evidence for the association between MRTF activity and increased malignancy in human breast cancer.Findings from these studies justify future exploration of specific small molecule inhibitor of the MRTF-SRF transcriptional complex as a potential therapeutic agent in breast cancer.

3.
FASEB Bioadv ; 4(8): 509-523, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35949508

RESUMEN

Breast cancer (BC)-related mortality primarily results from metastatic colonization of disseminated cells. Actin polymerization plays an important role in driving post-extravasation metastatic outgrowth of tumor cells. This study examines the role of myocardin-related transcription factor (MRTF)/serum-response (SRF), a transcription system well known for regulation of cytoskeletal genes, in metastatic colonization of BC cells. We demonstrated that co-depletion of MRTF isoforms (MRTF-A and MRTF-B) dramatically impairs single-cell outgrowth ability of BC cells as well as retards growth progression of pre-established BC cell colonies in three-dimensional (3D) cultures. Conversely, overexpression of MRTF-A promotes initiation and progression of tumor-cell outgrowth in vitro, primary tumor formation, and metastatic outgrowth of seeded BC cells in vivo, and these changes can be dramatically blocked by molecular disruption of MRTF-A's interaction with SRF. Correlated with the outgrowth phenotypes, we further demonstrate MRTF's ability to augment the intrinsic cellular ability to polymerize actin and formation of F-actin-based protrusive structures requiring SRF's interaction. Pharmacological proof-of-concept studies show that small molecules capable of interfering with MRTF/SRF signaling robustly suppresses single-cell outgrowth and progression of pre-established outgrowth of BC cells in vitro as well as experimental metastatic burden of BC cells in vivo. Based on these data, we conclude that MRTF activity potentiates metastatic colonization of BC cells and therefore, targeting MRTF may be a promising strategy to diminish metastatic burden in BC.

4.
Front Mol Biosci ; 9: 807324, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480877

RESUMEN

Hybrid epithelial/mesenchymal cells (E/M) are key players in aggressive cancer metastasis. It remains a challenge to understand how these cell states, which are mostly non-existent in healthy tissue, become stable phenotypes participating in collective cancer migration. The transcription factor Nrf2, which is associated with tumor progression and resistance to therapy, appears to be central to this process. Here, using a combination of immunocytochemistry, single cell biosensors, and computational modeling, we show that Nrf2 functions as a phenotypic stability factor for hybrid E/M cells by inhibiting a complete epithelial-mesenchymal transition (EMT) during collective cancer migration. We also demonstrate that Nrf2 and EMT signaling are spatially coordinated near the leading edge. In particular, computational analysis of an Nrf2-EMT-Notch network and experimental modulation of Nrf2 by pharmacological treatment or CRISPR/Cas9 gene editing reveal that Nrf2 stabilizes a hybrid E/M phenotype which is maximally observed in the interior region immediately behind the leading edge. We further demonstrate that the Nrf2-EMT-Notch network enhances Dll4 and Jagged1 expression at the leading edge, which correlates with the formation of leader cells and protruding tips. Altogether, our results provide direct evidence that Nrf2 acts as a phenotypic stability factor in restricting complete EMT and plays an important role in coordinating collective cancer migration.

5.
Analyst ; 147(4): 722-733, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35084404

RESUMEN

Double-stranded (ds) biosensors are homogeneous oligonucleotide probes for detection of nucleic acid sequences in biochemical assays and live cell imaging. Locked nucleic acid (LNA) modification can be incorporated in the biosensors to enhance the binding affinity, specificity, and resistance to nuclease degradation. However, LNA monomers in the quencher sequence can also prevent the target-fluorophore probe binding, which reduces the signal of the dsLNA biosensor. This study investigates the influence of LNA modification on dsLNA biosensors by altering the position and amount of LNA monomers present in the quencher sequence. We characterize the fluorophore-quencher interaction, target detection, and specificity of the biosensor in free solution and evaluate the performance of the dsLNA biosensor in 2D monolayers and 3D spheroids. The data indicate that a large amount of LNA monomers in the quencher sequence can enhance the specificity of the biosensor, but prevents effective target binding. Together, our results provide guidelines for improving the performance of dsLNA biosensors in nucleic acid detection and gene expression analysis in live cells.


Asunto(s)
Técnicas Biosensibles , Análisis de la Célula Individual , Sondas de Oligonucleótidos , Oligonucleótidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA