Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(24): e2401686121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838019

RESUMEN

S-layers are crystalline arrays found on bacterial and archaeal cells. Lactobacillus is a diverse family of bacteria known especially for potential gut health benefits. This study focuses on the S-layer proteins from Lactobacillus acidophilus and Lactobacillus amylovorus common in the mammalian gut. Atomic resolution structures of Lactobacillus S-layer proteins SlpA and SlpX exhibit domain swapping, and the obtained assembly model of the main S-layer protein SlpA aligns well with prior electron microscopy and mutagenesis data. The S-layer's pore size suggests a protective role, with charged areas aiding adhesion. A highly similar domain organization and interaction network are observed across the Lactobacillus genus. Interaction studies revealed conserved binding areas specific for attachment to teichoic acids. The structure of the SlpA S-layer and the suggested incorporation of SlpX as well as its interaction with teichoic acids lay the foundation for deciphering its role in immune responses and for developing effective treatments for a variety of infectious and bacteria-mediated inflammation processes, opening opportunities for targeted engineering of the S-layer or lactobacilli bacteria in general.


Asunto(s)
Glicoproteínas de Membrana , Ácidos Teicoicos , Ácidos Teicoicos/metabolismo , Ácidos Teicoicos/química , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/química , Lactobacillus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Modelos Moleculares , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/genética
2.
ACS Appl Mater Interfaces ; 14(14): 15871-15880, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35349260

RESUMEN

Bioprinting of engineered bacteria is of great interest for applications of synthetic biology in the context of living biomaterials, but so far, only a few viable approaches are available for the printing of gels hosting live Escherichia coli bacteria. Here, we develop a gentle extrusion-based bioprinting method based on an inexpensive alginate/agarose ink mixture that enables printing of E. coli into three-dimensional hydrogel structures up to 10 mm in height. We first characterize the rheological properties of the gel ink and then study the growth of the bacteria inside printed structures. We show that the maturation of fluorescent proteins deep within the printed structures can be facilitated by the addition of a calcium peroxide-based oxygen generation system. We then utilize the bioprinter to control different types of interactions between bacteria that depend on their spatial position. We next show quorum-sensing-based chemical communication between the engineered sender and receiver bacteria placed at different positions inside the bioprinted structure and finally demonstrate the fabrication of barrier structures defined by nonmotile bacteria that can guide the movement of chemotactic bacteria inside a gel. We anticipate that a combination of 3D bioprinting and synthetic biological approaches will lead to the development of living biomaterials containing engineered bacteria as dynamic functional units.


Asunto(s)
Bioimpresión , Hidrogeles , Materiales Biocompatibles/farmacología , Bioimpresión/métodos , Quimiotaxis , Escherichia coli , Hidrogeles/química , Hidrogeles/farmacología , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
3.
Sci Total Environ ; 801: 149619, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34438150

RESUMEN

River systems have undergone a massive transformation since the Anthropocene. The natural properties of river systems have been drastically altered and reshaped, limiting the use of management frameworks, their scientific knowledge base and their ability to provide adequate solutions for current problems and those of the future, such as climate change, biodiversity crisis and increased demands for water resources. To address these challenges, a socioecologically driven research agenda for river systems that complements current approaches is needed and proposed. The implementation of the concepts of social metabolism and the colonisation of natural systems into existing concepts can provide a new basis to analyse the coevolutionary coupling of social systems with ecological and hydrological (i.e., 'socio-ecohydrological') systems within rivers. To operationalize this research agenda, we highlight four initial core topics defined as research clusters (RCs) to address specific system properties in an integrative manner. The colonisation of natural systems by social systems is seen as a significant driver of the transformation processes in river systems. These transformation processes are influenced by connectivity (RC 1), which primarily addresses biophysical aspects and governance (RC 2), which focuses on the changes in social systems. The metabolism (RC 3) and vulnerability (RC 4) of the social and natural systems are significant aspects of the coupling of social systems and ecohydrological systems with investments, energy, resources, services and associated risks and impacts. This socio-ecohydrological research agenda complements other recent approaches, such as 'socio-ecological', 'socio-hydrological' or 'socio-geomorphological' systems, by focusing on the coupling of social systems with natural systems in rivers and thus, by viewing the socioeconomic features of river systems as being just as important as their natural characteristics. The proposed research agenda builds on interdisciplinarity and transdisciplinarity and requires the implementation of such programmes into the education of a new generation of river system scientists, managers and engineers who are aware of the transformation processes and the coupling between systems.


Asunto(s)
Ríos , Recursos Hídricos , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Predicción , Hidrología
4.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 9): 2376-89, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25195751

RESUMEN

Conjugative transfer through type IV secretion multiprotein complexes is the most important means of spreading antimicrobial resistance. Plasmid pIP501, frequently found in clinical Enterococcus faecalis and Enterococcus faecium isolates, is the first Gram-positive (G+) conjugative plasmid for which self-transfer to Gram-negative (G-) bacteria has been demonstrated. The pIP501-encoded type IV secretion system (T4SS) protein TraN localizes to the cytoplasm and shows specific DNA binding. The specific DNA-binding site upstream of the pIP501 origin of transfer (oriT) was identified by a novel footprinting technique based on exonuclease digestion and sequencing, suggesting TraN to be an accessory protein of the pIP501 relaxase TraA. The structure of TraN was determined to 1.35 Šresolution. It revealed an internal dimer fold with antiparallel ß-sheets in the centre and a helix-turn-helix (HTH) motif at both ends. Surprisingly, structurally related proteins (excisionases from T4SSs of G+ conjugative transposons and transcriptional regulators of the MerR family) resembling only one half of TraN were found. Thus, TraN may be involved in the early steps of pIP501 transfer, possibly triggering pIP501 TraA relaxase activity by recruiting the relaxosome to the assembled mating pore.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Enterococcus faecalis/química , Enterococcus faecium/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , Cartilla de ADN , Proteínas de Unión al ADN/metabolismo , Espectrometría de Masas , Conformación Proteica , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA