Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5493, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944657

RESUMEN

JNK signaling is a critical regulator of inflammation and regeneration, but how it is controlled in specific tissue contexts remains unclear. Here we show that, in the Drosophila intestine, the TNF-type ligand, Eiger (Egr), is expressed exclusively by intestinal stem cells (ISCs) and enteroblasts (EBs), where it is induced by stress and during aging. Egr preferentially activates JNK signaling in a paracrine fashion in differentiated enterocytes (ECs) via its receptor, Grindelwald (Grnd). N-glycosylation genes (Alg3, Alg9) restrain this activation, and stress-induced downregulation of Alg3 and Alg9 correlates with JNK activation, suggesting a regulatory switch. JNK activity in ECs induces expression of the intermembrane protease Rhomboid (Rho), driving secretion of EGFR ligands Keren (Krn) and Spitz (Spi), which in turn activate EGFR signaling in progenitor cells (ISCs and EBs) to stimulate their growth and division, as well as to produce more Egr. This study uncovers an N-glycosylation-controlled, paracrine JNK-EGFR-JNK feedforward loop that sustains ISC proliferation during stress-induced gut regeneration.


Asunto(s)
Proteínas de Drosophila , Receptores ErbB , Intestinos , Sistema de Señalización de MAP Quinasas , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Intestinos/citología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Enterocitos/metabolismo , Enterocitos/citología , Células Madre/metabolismo , Células Madre/citología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Drosophila/metabolismo , Glicosilación , Receptores de Péptidos de Invertebrados/metabolismo , Receptores de Péptidos de Invertebrados/genética , Proliferación Celular , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Transducción de Señal , Comunicación Celular , Diferenciación Celular , Factor de Crecimiento Epidérmico , Proteínas de la Membrana
2.
Curr Protoc ; 4(5): e1062, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38775005

RESUMEN

The architecture and morphology of the intestinal tissue from mice or other small animals are difficult to preserve for histological and molecular analysis due to the fragile nature of this tissue. The intestinal mucosa consists of villi and crypts lined with epithelial cells. In between the epithelial folds extends the lamina propria, a loose connective tissue that contains blood and lymph vessels, fibroblasts, and immune cells. Underneath the mucosa are two layers of contractile smooth muscle and nerves. The tissue experiences significant changes during fixation, which can impair the reliability of histologic analysis. Poor-quality histologic sections are not suitable for quantitative image-based tissue analysis. This article offers a new fixative composed of neutral buffered formalin (NBF) and acetic acid, called FA. This fixative significantly improved the histology of mouse intestinal tissue compared to traditional NBF and enabled precise, reproducible histologic molecular analyses using QuPath software. Algorithmic training of QuPath allows for automated segmentation of intestinal compartments, which can be further interrogated for cellular composition and disease-related changes. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Improved preservation of mouse intestinal tissue using a formalin/acetic acid fixative Support Protocol: Quantitative tissue analysis using QuPath.


Asunto(s)
Ácido Acético , Fijadores , Formaldehído , Fijación del Tejido , Animales , Ratones , Fijación del Tejido/métodos , Mucosa Intestinal/citología , Intestinos/citología , Intestinos/patología , Programas Informáticos
3.
Gastroenterology ; 165(5): 1136-1150, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37541526

RESUMEN

BACKGROUND & AIMS: Cancers of the alimentary tract, including esophageal adenocarcinomas, colorectal cancers, and cancers of the gastric cardia, are common comorbidities of obesity. Prolonged, excessive delivery of macronutrients to the cells lining the gut can increase one's risk for these cancers by inducing imbalances in the rate of intestinal stem cell proliferation vs differentiation, which can produce polyps and other aberrant growths. We investigated whether ceramides, which are sphingolipids that serve as a signal of nutritional excess, alter stem cell behaviors to influence cancer risk. METHODS: We profiled sphingolipids and sphingolipid-synthesizing enzymes in human adenomas and tumors. Thereafter, we manipulated expression of sphingolipid-producing enzymes, including serine palmitoyltransferase (SPT), in intestinal progenitors of mice, cultured organoids, and Drosophila to discern whether sphingolipids altered stem cell proliferation and metabolism. RESULTS: SPT, which diverts dietary fatty acids and amino acids into the biosynthetic pathway that produces ceramides and other sphingolipids, is a critical modulator of intestinal stem cell homeostasis. SPT and other enzymes in the sphingolipid biosynthesis pathway are up-regulated in human intestinal adenomas. They produce ceramides, which serve as prostemness signals that stimulate peroxisome-proliferator activated receptor-α and induce fatty acid binding protein-1. These actions lead to increased lipid utilization and enhanced proliferation of intestinal progenitors. CONCLUSIONS: Ceramides serve as critical links between dietary macronutrients, epithelial regeneration, and cancer risk.


Asunto(s)
Adenoma , Ceramidas , Humanos , Animales , Ratones , Ceramidas/metabolismo , Ácidos Grasos , Esfingolípidos/metabolismo , Serina C-Palmitoiltransferasa/metabolismo
4.
Bioessays ; 44(11): e2200150, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36222263

RESUMEN

Before a cell divides into two daughter cells, it typically doubles not only its DNA, but also its mass. Numerous studies in cells ranging from yeast to mammals have shown that cellular growth, stimulated by nutrients and/or growth factor signaling, is a prerequisite for cell cycle progression in most types of cells. The textbook view of growth-regulated cell cycles is that growth signaling activates the transcription of G1 Cyclin genes to induce cell proliferation, and also stimulates anabolic metabolism and cell growth in parallel. However, genetic knockout tests in model organisms indicate that this is not the whole story, and new studies show that additional, "smarter" mechanisms help to coordinate the cell cycle with growth itself. Here we summarize recent advances in this field, and discuss current models in which growth signaling regulates cell proliferation by targeting core cell cycle regulators via non-transcriptional mechanisms.


Asunto(s)
Proteínas de Ciclo Celular , Ciclo Celular , Proliferación Celular , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/genética , Proliferación Celular/fisiología , Ciclinas/genética , Ciclinas/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mamíferos/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Elife ; 112022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36005292

RESUMEN

In recent years, live-imaging techniques have been developed for the adult midgut of Drosophila melanogaster that allow temporal characterization of key processes involved in stem cell and tissue homeostasis. However, these organ culture techniques have been limited to imaging sessions of <16 hours, an interval too short to track dynamic processes such as damage responses and regeneration, which can unfold over several days. Therefore, we developed an organ explant culture protocol capable of sustaining midguts ex vivo for up to 3 days. This was made possible by the formulation of a culture medium specifically designed for adult Drosophila tissues with an increased Na+/K+ ratio and trehalose concentration, and by placing midguts at an air-liquid interface for enhanced oxygenation. We show that midgut progenitor cells can respond to gut epithelial damage ex vivo, proliferating and differentiating to replace lost cells, but are quiescent in healthy intestines. Using ex vivo gene induction to promote stem cell proliferation using RasG12V or string and Cyclin E overexpression, we demonstrate that progenitor cell lineages can be traced through multiple cell divisions using live imaging. We show that the same culture set-up is useful for imaging adult renal tubules and ovaries for up to 3 days and hearts for up to 10 days. By enabling both long-term imaging and real-time ex vivo gene manipulation, our simple culture protocol provides a powerful tool for studies of epithelial biology and cell lineage behavior.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Ciclina E , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Intestinos , Técnicas de Cultivo de Órganos , Células Madre , Trehalosa
6.
Curr Biol ; 32(17): 3704-3719.e7, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35896119

RESUMEN

EGFR-RAS-ERK signaling promotes growth and proliferation in many cell types, and genetic hyperactivation of RAS-ERK signaling drives many cancers. Yet, despite intensive study of upstream components in EGFR signal transduction, the identities and functions of downstream effectors in the pathway are poorly understood. In Drosophila intestinal stem cells (ISCs), the transcriptional repressor Capicua (Cic) and its targets, the ETS-type transcriptional activators Pointed (pnt) and Ets21C, are essential downstream effectors of mitogenic EGFR signaling. Here, we show that these factors promote EGFR-dependent metabolic changes that increase ISC mass, mitochondrial growth, and mitochondrial activity. Gene target analysis using RNA and DamID sequencing revealed that Pnt and Ets21C directly upregulate not only DNA replication and cell cycle genes but also genes for oxidative phosphorylation, the TCA cycle, and fatty acid beta-oxidation. Metabolite analysis substantiated these metabolic functions. The mitochondrial transcription factor B2 (mtTFB2), a direct target of Pnt, was required and partially sufficient for EGFR-driven ISC growth, mitochondrial biogenesis, and proliferation. MEK-dependent EGF signaling stimulated mitochondrial biogenesis in human RPE-1 cells, indicating the conservation of these metabolic effects. This work illustrates how EGFR signaling alters metabolism to coordinately activate cell growth and cell division.


Asunto(s)
Proteínas de Drosophila , Animales , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Proteínas del Tejido Nervioso , Biogénesis de Organelos , Proteínas Proto-Oncogénicas , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Receptores de Péptidos de Invertebrados/genética , Receptores de Péptidos de Invertebrados/metabolismo , Transducción de Señal/fisiología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074910

RESUMEN

E2F transcription factors are master regulators of the eukaryotic cell cycle. In Drosophila, the sole activating E2F, E2F1, is both required for and sufficient to promote G1→S progression. E2F1 activity is regulated both by binding to RB Family repressors and by posttranscriptional control of E2F1 protein levels by the EGFR and TOR signaling pathways. Here, we investigate cis-regulatory elements in the E2f1 messenger RNA (mRNA) that enable E2f1 translation to respond to these signals and promote mitotic proliferation of wing imaginal disc and intestinal stem cells. We show that small upstream open reading frames (uORFs) in the 5' untranslated region (UTR) of the E2f1 mRNA limit its translation, impacting rates of cell proliferation. E2f1 transgenes lacking these 5'UTR uORFs caused TOR-independent expression and excess cell proliferation, suggesting that TOR activity can bypass uORF-mediated translational repression. EGFR signaling also enhanced translation but through a mechanism less dependent on 5'UTR uORFs. Further, we mapped a region in the E2f1 mRNA that contains a translational enhancer, which may also be targeted by TOR signaling. This study reveals translational control mechanisms through which growth signaling regulates cell cycle progression.


Asunto(s)
Ciclo Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas , Factores de Transcripción/metabolismo , Animales , Biomarcadores , Proliferación Celular , Técnica del Anticuerpo Fluorescente , Mitosis , Sistemas de Lectura Abierta , Procesamiento Postranscripcional del ARN , Estrés Fisiológico/genética , Regiones no Traducidas , Alas de Animales/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-34312250

RESUMEN

In adult insects, as in vertebrates, the gut epithelium is a highly regenerative tissue that can renew itself rapidly in response to changing inputs from nutrition, the gut microbiota, ingested toxins, and signals from other organs. Because of its cellular and genetic similarities to the mammalian intestine, and its relevance as a target for the control of insect pests and disease vectors, many researchers have used insect intestines to address fundamental questions about stem cell functions during tissue maintenance and regeneration. In Drosophila, where most of the experimental work has been performed, not only are intestinal cell types and behaviors well characterized, but numerous cell signaling interactions have been detailed that mediate gut epithelial regeneration. A prevailing model for regenerative responses in the insect gut invokes stress sensing by damaged enterocytes (ECs) as a principal source for signaling that activates the division of intestinal stem cells (ISCs) and the growth and differentiation of their progeny. However, extant data also reveal alternative mechanisms for regeneration that involve ISC-intrinsic functions, active culling of healthy epithelial cells, enhanced EC growth, and even cytoplasmic shedding by infected ECs. This article reviews current knowledge of the molecular mechanisms involved in gut regeneration in several insect models (Drosophila and Aedes of the order Diptera, and several Lepidoptera).


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Proliferación Celular , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Enterocitos/metabolismo , Intestinos , Mamíferos , Células Madre
9.
Dev Cell ; 56(12): 1695-1696, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34157303

RESUMEN

A size checkpoint active during cell proliferation ensures that cells reach a certain target size before transitioning into S phase. In this issue of Developmental Cell, Tan et al. identify a distinct function of cyclin-dependent kinase 4 (CDK4) in determining the target cell size for cell cycle progression.


Asunto(s)
Ciclina D1 , Puntos de Control del Ciclo Celular , Tamaño de la Célula , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Fase S
10.
Nat Cell Biol ; 23(5): 497-510, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33972730

RESUMEN

The Drosophila trachea, as the functional equivalent of mammalian blood vessels, senses hypoxia and oxygenates the body. Here, we show that the adult intestinal tracheae are dynamic and respond to enteric infection, oxidative agents and tumours with increased terminal branching. Increased tracheation is necessary for efficient damage-induced intestinal stem cell (ISC)-mediated regeneration and is sufficient to drive ISC proliferation in undamaged intestines. Gut damage or tumours induce HIF-1α (Sima in Drosophila), which stimulates tracheole branching via the FGF (Branchless (Bnl))-FGFR (Breathless (Btl)) signalling cascade. Bnl-Btl signalling is required in the intestinal epithelium and the trachea for efficient damage-induced tracheal remodelling and ISC proliferation. Chemical or Pseudomonas-generated reactive oxygen species directly affect the trachea and are necessary for branching and intestinal regeneration. Similarly, tracheole branching and the resulting increase in oxygenation are essential for intestinal tumour growth. We have identified a mechanism of tracheal-intestinal tissue communication, whereby damage and tumours induce neo-tracheogenesis in Drosophila, a process reminiscent of cancer-induced neoangiogenesis in mammals.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Regeneración/fisiología , Animales , Animales Modificados Genéticamente/metabolismo , Proteínas de Unión al ADN/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Receptores de Factores de Crecimiento de Fibroblastos/genética
11.
Elife ; 102021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33724181

RESUMEN

Tissue homeostasis requires long-term lineage fidelity of somatic stem cells. Whether and how age-related changes in somatic stem cells impact the faithful execution of lineage decisions remains largely unknown. Here, we address this question using genome-wide chromatin accessibility and transcriptome analysis as well as single-cell RNA-seq to explore stem-cell-intrinsic changes in the aging Drosophila intestine. These studies indicate that in stem cells of old flies, promoters of Polycomb (Pc) target genes become differentially accessible, resulting in the increased expression of enteroendocrine (EE) cell specification genes. Consistently, we find age-related changes in the composition of the EE progenitor cell population in aging intestines, as well as a significant increase in the proportion of EE-specified intestinal stem cells (ISCs) and progenitors in aging flies. We further confirm that Pc-mediated chromatin regulation is a critical determinant of EE cell specification in the Drosophila intestine. Pc is required to maintain expression of stem cell genes while ensuring repression of differentiation and specification genes. Our results identify Pc group proteins as central regulators of lineage identity in the intestinal epithelium and highlight the impact of age-related decline in chromatin regulation on tissue homeostasis.


Asunto(s)
Células Madre Adultas/metabolismo , Linaje de la Célula/genética , Proteínas de Drosophila/genética , Intestinos/citología , Proteínas del Grupo Polycomb/genética , Envejecimiento/genética , Animales , Diferenciación Celular/genética , Cromatina/genética , Cromatina/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Enterocitos/metabolismo , Células Enteroendocrinas/metabolismo , Regulación de la Expresión Génica , Homeostasis , Mucosa Intestinal/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Transcriptoma
12.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33558234

RESUMEN

Using a gain-of-function screen in Drosophila, we identified the Krüppel-like factor Cabut (Cbt) as a positive regulator of cell cycle gene expression and cell proliferation. Enforced cbt expression is sufficient to induce an extra cell division in the differentiating fly wing or eye, and also promotes intestinal stem cell divisions in the adult gut. Although inappropriate cell proliferation also results from forced expression of the E2f1 transcription factor or its target, Cyclin E, Cbt does not increase E2F1 or Cyclin E activity. Instead, Cbt regulates a large set of E2F1 target genes independently of E2F1, and our data suggest that Cbt acts via distinct binding sites in target gene promoters. Although Cbt was not required for cell proliferation during wing or eye development, Cbt is required for normal intestinal stem cell divisions in the midgut, which expresses E2F1 at relatively low levels. The E2F1-like functions of Cbt identify a distinct mechanism for cell cycle regulation that may be important in certain normal cell cycles, or in cells that cycle inappropriately, such as cancer cells.


Asunto(s)
Ciclo Celular/genética , Proteínas de Drosophila/metabolismo , Factores de Transcripción/metabolismo , Animales , Ojo Compuesto de los Artrópodos/citología , Ojo Compuesto de los Artrópodos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Mutación con Ganancia de Función , Prueba de Complementación Genética , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Factores de Transcripción/genética
13.
Nature ; 584(7821): 415-419, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641829

RESUMEN

Sexual dimorphism arises from genetic differences between male and female cells, and from systemic hormonal differences1-3. How sex hormones affect non-reproductive organs is poorly understood, yet highly relevant to health given the sex-biased incidence of many diseases4. Here we report that steroid signalling in Drosophila from the ovaries to the gut promotes growth of the intestine specifically in mated females, and enhances their reproductive output. The active ovaries of the fly produce the steroid hormone ecdysone, which stimulates the division and expansion of intestinal stem cells in two distinct proliferative phases via the steroid receptors EcR and Usp and their downstream targets Broad, Eip75B and Hr3. Although ecdysone-dependent growth of the female gut augments fecundity, the more active and more numerous intestinal stem cells also increase female susceptibility to age-dependent gut dysplasia and tumorigenesis, thus potentially reducing lifespan. This work highlights the trade-offs in fitness traits that occur when inter-organ signalling alters stem-cell behaviour to optimize organ size.


Asunto(s)
Drosophila melanogaster/metabolismo , Fertilidad/fisiología , Intestinos/crecimiento & desarrollo , Longevidad/fisiología , Tamaño de los Órganos/fisiología , Ovario/metabolismo , Esteroides/metabolismo , Envejecimiento , Animales , Carcinogénesis , Proliferación Celular , Copulación/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Ecdisona/metabolismo , Femenino , Mucosa Intestinal/anatomía & histología , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestinos/anatomía & histología , Intestinos/citología , Intestinos/patología , Masculino , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
14.
EMBO Rep ; 21(8): e51175, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32715610

RESUMEN

The gastrointestinal tract undergoes homeostatic self-renewal to replace aged and damaged epithelial cells. This process, sustained by intestinal stem cells (ISCs), can operate accurately for many years but gradually declines with age. Although stem cell aging has been intensively explored, the mechanisms remain poorly understood. In this issue of EMBO Reports, Du et al report that alpha-lipoic acid (ALA) sustains an active endocytosis-autophagy network that effectively reverses age-dependent ISC hyperplasia in Drosophila (Du et al, 2020). This work suggests a new strategy for treating aging-associated gastrointestinal diseases.


Asunto(s)
Proteínas de Drosophila , Ácido Tióctico , Envejecimiento , Animales , Autofagia , Senescencia Celular , Endosomas , Intestinos , Células Madre
15.
Proc Natl Acad Sci U S A ; 116(52): 26591-26598, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31843907

RESUMEN

Translationally controlled tumor protein (TCTP) is a highly conserved protein functioning in multiple cellular processes, ranging from growth to immune responses. To explore the role of TCTP in tissue maintenance and regeneration, we employed the adult Drosophila midgut, where multiple signaling pathways interact to precisely regulate stem cell division for tissue homeostasis. Tctp levels were significantly increased in stem cells and enteroblasts upon tissue damage or activation of the Hippo pathway that promotes regeneration of intestinal epithelium. Stem cells with reduced Tctp levels failed to proliferate during normal tissue homeostasis and regeneration. Mechanistically, Tctp forms a complex with multiple proteins involved in translation and genetically interacts with ribosomal subunits. In addition, Tctp increases both Akt1 protein abundance and phosphorylation in vivo. Altogether, Tctp regulates stem cell proliferation by interacting with key growth regulatory signaling pathways and the translation process in vivo.

16.
Nat Commun ; 10(1): 4365, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554796

RESUMEN

Epithelia are exposed to diverse types of stress and damage from pathogens and the environment, and respond by regenerating. Yet, the proximal mechanisms that sense epithelial damage remain poorly understood. Here we report that p38 signaling is activated in adult Drosophila midgut enterocytes in response to diverse stresses including pathogenic bacterial infection and chemical and mechanical insult. Two upstream kinases, Ask1 and Licorne (MKK3), are required for p38 activation following infection, oxidative stress, detergent exposure and wounding. Ask1-p38 signaling in enterocytes is required upon infection to promote full intestinal stem cell (ISC) activation and regeneration, partly through Upd3/Jak-Stat signaling. Furthermore, reactive oxygen species (ROS) produced by the NADPH oxidase Nox in enterocytes, are required for p38 activation in enterocytes following infection or wounding, and for ISC activation upon infection or detergent exposure. We propose that Nox-ROS-Ask1-MKK3-p38 signaling in enterocytes integrates multiple different stresses to induce regeneration.


Asunto(s)
Proteínas de Drosophila/metabolismo , Intestinos/fisiopatología , MAP Quinasa Quinasa 3/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , NADPH Oxidasas/metabolismo , Regeneración/fisiología , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Animales Modificados Genéticamente , Infecciones Bacterianas/microbiología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Enterocitos/metabolismo , Enterocitos/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/fisiopatología , Intestinos/microbiología , Intestinos/patología , MAP Quinasa Quinasa 3/genética , Quinasas Quinasa Quinasa PAM/genética , NADPH Oxidasas/genética , Estrés Oxidativo , Regeneración/genética , Células Madre/metabolismo , Células Madre/microbiología , Estrés Mecánico , Proteínas Quinasas p38 Activadas por Mitógenos/genética
17.
Autophagy ; 15(9): 1668-1670, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31213134

RESUMEN

We recently found that re-routing intracellular vesicle traffic by suppressing macroautophagy/autophagy or endocytosis genes drastically deregulates Drosophila intestinal stem cell (ISC) proliferation, leading to massive gut hyperplasia that has a negative impact upon lifespan. Beginning with the poorly characterized Snx (sorting nexin) genes, we surveyed a broad set of genes in the endocytosis-autophagy network and found that most of them have this effect. We then discovered that deregulated Egfr-Ras85D/Ras1-mitogen-activated protein kinase signaling is the primary trigger for ISC proliferation upon disruption of this network and determined that in the mutants, ligand-activated receptors were stabilized and recycled to the cell surface via Rab11-dependent endosomes, rather than being degraded via autophagosomes. We profiled the mutational landscape for orthologous network genes in human cancers using The Cancer Genome Atlas (TCGA), and revealed strong, novel associations with distinct genomic and epigenomic subtypes of colorectal cancer.


Asunto(s)
Autofagia , Microbioma Gastrointestinal , Animales , Proliferación Celular , Homeostasis , Humanos , Células Madre
18.
Dev Cell ; 49(4): 574-589.e5, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31006650

RESUMEN

The effect of intracellular vesicle trafficking on stem-cell behavior is largely unexplored. We screened the Drosophila sorting nexins (SNXs) and discovered that one, SH3PX1, profoundly affects gut homeostasis and lifespan. SH3PX1 restrains intestinal stem cell (ISC) division through an endocytosis-autophagy network that includes Dynamin, Rab5, Rab7, Atg1, 5, 6, 7, 8a, 9, 12, 16, and Syx17. Blockages in this network stabilize ligand-activated EGFRs, recycling them via Rab11-dependent endosomes to the plasma membrane. This hyperactivated ERK, calcium signaling, and ER stress, autonomously stimulating ISC proliferation. The excess divisions induced epithelial stress, Yki activity, and Upd3 and Rhomboid production in enterocytes, catalyzing feedforward ISC hyperplasia. Similarly, blocking autophagy increased ERK activity in human cells. Many endocytosis-autophagy genes are mutated in cancers, most notably those enriched in microsatellite instable-high and KRAS-wild-type colorectal cancers. Disruptions in endocytosis and autophagy may provide an alternative route to RAS-ERK activation, resulting in EGFR-dependent cancers.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Receptores ErbB/metabolismo , Mucosa Intestinal/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Receptores de Péptidos de Invertebrados/metabolismo , Células Madre/citología , Animales , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/metabolismo , Diferenciación Celular/fisiología , Membrana Celular/metabolismo , Proliferación Celular/fisiología , Drosophila melanogaster/metabolismo , Endocitosis , Endosomas/metabolismo , Mucosa Intestinal/metabolismo , Transporte de Proteínas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transducción de Señal/fisiología , Nexinas de Clasificación/metabolismo , Células Madre/metabolismo , Proteínas de Unión al GTP rab/metabolismo
19.
Development ; 145(14)2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-30021843

RESUMEN

Polyploid cells, which contain multiple copies of the typically diploid genome, are widespread in plants and animals. Polyploidization can be developmentally programmed or stress induced, and arises from either cell-cell fusion or a process known as endoreplication, in which cells replicate their DNA but either fail to complete cytokinesis or to progress through M phase entirely. Polyploidization offers cells several potential fitness benefits, including the ability to increase cell size and biomass production without disrupting cell and tissue structure, and allowing improved cell longevity through higher tolerance to genomic stress and apoptotic signals. Accordingly, recent studies have uncovered crucial roles for polyploidization in compensatory cell growth during tissue regeneration in the heart, liver, epidermis and intestine. Here, we review current knowledge of the molecular pathways that generate polyploidy and discuss how polyploidization is used in tissue repair and regeneration.


Asunto(s)
División Celular/fisiología , Replicación del ADN/fisiología , Poliploidía , Regeneración/fisiología , Estrés Fisiológico/fisiología , Animales , Humanos , Especificidad de Órganos
20.
FEBS Lett ; 592(13): 2297-2307, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29897613

RESUMEN

The "free radical theory of aging" suggests that reactive oxygen species (ROS) are responsible for age-related loss of cellular functions and, therefore, represent the main cause of aging. Redox regulation by thioredoxin-1 (TRX) plays a crucial role in responses to oxidative stress. We show that thioredoxin-interacting protein (TXNIP), a negative regulator of TRX, plays a major role in maintaining the redox status and, thereby, influences aging processes. This role of TXNIP is conserved from flies to humans. Age-dependent upregulation of TXNIP results in decreased stress resistance to oxidative challenge in primary human cells and in Drosophila. Experimental overexpression of TXNIP in flies shortens lifespan due to elevated oxidative DNA damage, whereas downregulation of TXNIP enhances oxidative stress resistance and extends lifespan.


Asunto(s)
Envejecimiento/genética , Proteínas Portadoras/fisiología , Proteínas de Ciclo Celular/fisiología , Daño del ADN/genética , Estrés Oxidativo/genética , Adulto , Anciano , Envejecimiento/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Células Cultivadas , Drosophila melanogaster , Células HEK293 , Humanos , Células Jurkat , Longevidad/genética , Persona de Mediana Edad , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/metabolismo , Regulación hacia Arriba/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA