Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 54(21): 13926-13934, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33058723

RESUMEN

Methane emission fluxes were estimated for 71 oil and gas well pads in the western Permian Basin (Delaware Basin), using a mobile laboratory and an inverse Gaussian dispersion method (OTM 33A). Sites with emissions that were below detection limit (BDL) for OTM 33A were recorded and included in the sample. Average emission rate per site was estimated by bootstrapping and by maximum likelihood best log-normal fit. Sites had to be split into "complex" (sites with liquid storage tanks and/or compressors) and "simple" (sites with only wellheads/pump jacks/separators) categories to achieve acceptable log-normal fits. For complex sites, the log-normal fit depends heavily on the number of BDL sites included. As more BDL sites are included, the log-normal distribution fit to the data is falsely widened, overestimating the mean, highlighting the importance of correctly characterizing low end emissions when using log-normal fits. Basin-wide methane emission rates were estimated for the production sector of the New Mexico portion of the Permian and range from ∼520 000 tons per year, TPY (bootstrapping, 95% CI: 300 000-790 000) to ∼610 000 TPY (log-normal fit method, 95% CI: 330 000-1 000 000). These estimates are a factor of 5.5-9.0 times greater than EPA National Emission Inventory (NEI) estimates for the region.


Asunto(s)
Contaminantes Atmosféricos , Metano , Contaminantes Atmosféricos/análisis , Laboratorios , Metano/análisis , Gas Natural/análisis , New Mexico
2.
Environ Sci Technol ; 54(3): 1385-1394, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31715097

RESUMEN

Flux estimates of volatile organic compounds (VOCs) from oil and gas (O&G) production facilities are fundamental in understanding hazardous air pollutant concentrations and ozone formation. Previous off-site emission estimates derive fluxes by ratioing VOCs measured in canisters to methane fluxes measured in the field. This study uses the Environmental Protection Agency's Other Test Method 33A (OTM 33A) and a fast-response proton transfer reaction mass spectrometer to make direct measurements of VOC emissions from O&G facilities in the Upper Green River Basin, Wyoming. We report the first off-site direct flux estimates of benzene, toluene, ethylbenzene, and xylenes from upstream O&G production facilities and find that these estimates can vary significantly from flux estimates derived using both the canister ratio technique and from the emission inventory. The 32 OTM 33A flux estimates had arithmetic mean (and 95% CI) as follows: benzene 17.83 (0.22, 98.05) g/h, toluene 34.43 (1.01, 126.76) g/h, C8 aromatics 37.38 (1.06, 225.34) g/h, and methane 2.3 (1.7, 3.1) kg/h. A total of 20% of facilities measured accounted for ∼67% of total BTEX emissions. While this heavy tail is less dramatic than previous observations of methane in other basins, it is more prominent than that predicted by the emission inventory.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Monitoreo del Ambiente , Wyoming
3.
Environ Sci Technol ; 51(15): 8832-8840, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28628305

RESUMEN

Atmospheric methane emissions from active natural gas production sites in normal operation were quantified using an inverse Gaussian method (EPA's OTM 33a) in four major U.S. basins/plays: Upper Green River (UGR, Wyoming), Denver-Julesburg (DJ, Colorado), Uintah (Utah), and Fayetteville (FV, Arkansas). In DJ, Uintah, and FV, 72-83% of total measured emissions were from 20% of the well pads, while in UGR the highest 20% of emitting well pads only contributed 54% of total emissions. The total mass of methane emitted as a percent of gross methane produced, termed throughput-normalized methane average (TNMA) and determined by bootstrapping measurements from each basin, varied widely between basins and was (95% CI): 0.09% (0.05-0.15%) in FV, 0.18% (0.12-0.29%) in UGR, 2.1% (1.1-3.9%) in DJ, and 2.8% (1.0-8.6%) in Uintah. Overall, wet-gas basins (UGR, DJ, Uintah) had higher TNMA emissions than the dry-gas FV at all ranges of production per well pad. Among wet basins, TNMA emissions had a strong negative correlation with average gas production per well pad, suggesting that consolidation of operations onto single pads may reduce normalized emissions (average number of wells per pad is 5.3 in UGR versus 1.3 in Uintah and 2.8 in DJ).


Asunto(s)
Contaminantes Atmosféricos/análisis , Metano/análisis , Yacimiento de Petróleo y Gas , Arkansas , Colorado , Monitoreo del Ambiente , Gas Natural , Wyoming
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...