Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752317

RESUMEN

Native mass spectrometric analysis of TPR2A and GrpE with unpurified peptides derived from limited proteolysis of their respective PPI partners (HSP90 C-terminus and DnaK) facilitated efficient, qualitative identification of interfacial epitopes involved in transient PPI formation. Application of this approach can assist in elucidating interfaces of currently uncharacterised transient PPIs.

2.
Cell Stress Chaperones ; 29(1): 143-157, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38311120

RESUMEN

Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.


Asunto(s)
Proteínas de Choque Térmico , Medicina , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Respuesta al Choque Térmico/genética , Biología
4.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 596-610, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38169048

RESUMEN

Xylanases from glycoside hydrolase (GH) families 10 and 11 are common feed additives for broiler chicken diets due to their catalytic activity on the nonstarch polysaccharide xylan. This study investigated the potential of an optimized binary GH10 and GH11 xylanase cocktail to mitigate the antinutritional effects of xylan on the digestibility of locally sourced chicken feed. Immunofluorescence visualization of the activity of the xylanase cocktail on xylan in the yellow corn of the feed showed a substantial collapse in the morphology of cell walls. Secondly, the reduction in the viscosity of the digesta of the feed by the cocktail showed an effective degradation of the soluble fraction of xylan. Analysis of the xylan degradation products from broiler feeds by the xylanase cocktail showed that xylotriose and xylopentaose were the major xylooligosaccharides (XOS) produced. In vitro evaluation of the prebiotic potential of these XOS showed that they improved the growth of the beneficial bacteria Streptococcus thermophilus and Lactobacillus bulgaricus. The antibacterial activity of broths from XOS-supplemented probiotic cultures showed a suppressive effect on the growth of the extraintestinal infectious bacterium Klebsiella pneumoniae. Supplementing the xylanase cocktail in cereal animal feeds attenuated xylan's antinutritional effects by reducing digesta viscosity and releasing entrapped nutrients. Furthermore, the production of prebiotic XOS promoted the growth of beneficial bacteria while inhibiting the growth of pathogens. Based on these effects of the xylanase cocktail on the feed, improved growth performance and better feed conversion can potentially be achieved during poultry rearing.


Asunto(s)
Alimentación Animal , Pollos , Digestión , Endo-1,4-beta Xilanasas , Alimentación Animal/análisis , Animales , Digestión/efectos de los fármacos , Digestión/fisiología , Endo-1,4-beta Xilanasas/farmacología , Endo-1,4-beta Xilanasas/administración & dosificación , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria , Xilanos/farmacología , Xilanos/química , Probióticos/farmacología
5.
Methods Mol Biol ; 2693: 95-103, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37540429

RESUMEN

Protein-protein interactions (PPI) in cells play a pivotal role in cellular function and dynamics. Cellular proteostasis is maintained by PPI networks between molecular chaperones, co-chaperones, and client proteins. Consequently, strategies to visualize and analyze PPI in cells are useful in understanding protein homeostasis regulation. The Bimolecular Fluorescence Complementation (BiFC) assay has emerged as a useful tool for studying PPI between proteins in live or fixed cells. BiFC is based on the detection of fluorescence generated when interacting protein pairs, produced as fusion proteins with either the N- or C-terminal fragment of a fluorescent protein, are in sufficient proximity to permit reconstitution of the split fluorophore. Here, we describe the application of the BiFC assay to a model of chaperone-client interactions using Hsp90 and the validated client protein CDK4. This assay allows for the distribution and spatiotemporal analysis of HSP90-CDK4 complexes in live or fixed cells and is amenable to studying the effects of inhibitors and mutations on chaperone-client protein networks.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas , Humanos , Fluorescencia , Microscopía Fluorescente , Fenómenos Fisiológicos Celulares , Proteínas Luminiscentes/genética
6.
Methods Mol Biol ; 2693: 105-111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37540430

RESUMEN

The development of mutant microorganisms lacking J domain proteins (JDPs; formerly called Hsp40s) has enabled the development of complementation assays for testing the co-chaperone function of JDPs. In these assays, an exogenously expressed novel JDP is tested for its ability to functionally substitute for a non-expressed or nonfunctional endogenous JDP(s) by reversing a stress phenotype. For example, the in vivo functionality of prokaryotic JDPs can be tested on the basis of their ability to reverse the thermosensitivity of a dnaJ cbpA mutant strain of the bacterium Escherichia coli (OD259). Similarly, the in vivo functionality of eukaryotic JDPs can be assessed in a thermosensitive ydj1 mutant strain of the yeast Saccharomyces cerevisiae (JJ160). Here we outline the use of these thermosensitive microorganisms in complementation assays to functionally characterize a JDP from the bacterium, Agrobacterium tumefaciens (AgtDnaJ), and a JDP from the trypanosomal parasite, Trypanosoma cruzi (TcJ2).


Asunto(s)
Proteínas de Escherichia coli , Proteínas HSP70 de Choque Térmico , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Escherichia coli/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Escherichia coli/metabolismo
7.
Methods Mol Biol ; 2693: 113-123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37540431

RESUMEN

Many molecular chaperones act as holdases by binding hydrophobic regions of substrates to prevent aggregation. Therefore, measuring holdase activity is an amenable method to determine chaperone activity. The holdase function is reliably and easily achieved by monitoring the suppression of heat-induced aggregation of well-characterized model protein substrates. However, the standard assay format requires large amounts of protein and hence is not applicable to all proteins. Using DnaK from Escherichia coli and heat-induced aggregation of malate dehydrogenase, we describe a protocol for absorbance and fluorescence-based miniaturized versions of the standard aggregation suppression assay that are affordable and have wide application for low abundance holdases. The assay can be used for both fundamental characterization of holdase function in proteins and screening of inhibitors of holdase activity.


Asunto(s)
Proteínas de Escherichia coli , Agregado de Proteínas , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo
8.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37569903

RESUMEN

Human African trypanosomiasis is a neglected tropical disease caused by the extracellular protozoan parasite Trypanosoma brucei, and targeted for eradication by 2030. The COVID-19 pandemic contributed to the lengthening of the proposed time frame for eliminating human African trypanosomiasis as control programs were interrupted. Armed with extensive antigenic variation and the depletion of the B cell population during an infectious cycle, attempts to develop a vaccine have remained unachievable. With the absence of a vaccine, control of the disease has relied heavily on intensive screening measures and the use of drugs. The chemotherapeutics previously available for disease management were plagued by issues such as toxicity, resistance, and difficulty in administration. The approval of the latest and first oral drug, fexinidazole, is a major chemotherapeutic achievement for the treatment of human African trypanosomiasis in the past few decades. Timely and accurate diagnosis is essential for effective treatment, while poor compliance and resistance remain outstanding challenges. Drug discovery is on-going, and herein we review the recent advances in anti-trypanosomal drug discovery, including novel potential drug targets. The numerous challenges associated with disease eradication will also be addressed.


Asunto(s)
COVID-19 , Trypanosoma brucei brucei , Trypanosoma , Tripanosomiasis Africana , Animales , Humanos , Tripanosomiasis Africana/diagnóstico , Tripanosomiasis Africana/tratamiento farmacológico , Pandemias , COVID-19/epidemiología , Trypanosoma brucei brucei/metabolismo
10.
Cell Stress Chaperones ; 28(3): 231-237, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37071341

RESUMEN

Hsp90 is a molecular chaperone responsible for regulating proteostasis under physiological and pathological conditions. Its central role in a range of diseases and potential as a drug target has focused efforts to understand its mechanisms and biological functions and to identify modulators that may form the basis for therapies. The 10th international conference on the Hsp90 chaperone machine was held in Switzerland in October 2022. The meeting was organized by Didier Picard (Geneva, Switzerland) and Johannes Buchner (Garching, Germany) with an advisory committee of Olivier Genest, Mehdi Mollapour, Ritwick Sawarkar, and Patricija van Oosten-Hawle. This was a much anticipated first in-person meeting of the Hsp90 community since 2018 after the COVID-19 pandemic led to the postponement of the 2020 meeting. The conference remained true to the tradition of sharing novel data ahead of publication, providing unparalleled depth of insight for both experts and newcomers to the field.


Asunto(s)
COVID-19 , Pandemias , Humanos , Suiza , Unión Proteica , Chaperonas Moleculares/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo
11.
Chembiochem ; 24(8): e202300060, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36942876

RESUMEN

The young, fast-growing population of Africa means that harnessing the economic benefits of scientific research is critical to sustained and equitable growth in the continent. Moreover, the whole world would benefit from the added intellectual contribution that would come from nurturing African science. The high burden of neglected diseases in Africa makes chemical biology a particularly important field. In this editorial, the reconvergence of science conducted at the interface of chemistry and biology is placed in the context of African participation, its importance to global science and the unique blend of supporting and hindering factors that influence African scientific contributions. The new Biological and Medicinal Chemistry in Africa special collection showcases a broad spectrum of African chemical biology.


Asunto(s)
Química Farmacéutica , África
12.
Subcell Biochem ; 101: 351-387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36520313

RESUMEN

Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfill well-defined roles in protein folding and conformational stability via ATP-dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23, and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone-mediated folding process. However, chaperones are also involved in proteasomal and lysosomal degradation of client proteins. Like folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C-terminal Hsp70-binding protein (CHIP/STUB1). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome and autophagosome-lysosome systems. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.


Asunto(s)
Chaperonas Moleculares , Complejo de la Endopetidasa Proteasomal , Ubiquitina-Proteína Ligasas , Humanos , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Lisosomas , Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Pliegue de Proteína , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis
13.
Chembiochem ; 23(21): e202200322, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36017658

RESUMEN

Contemporary medicinal chemistry considers fragment-based drug discovery (FBDD) and inhibition of protein-protein interactions (PPI) as important means of expanding the volume of druggable chemical space. However, the ability to robustly identify valid fragments and PPI inhibitors is an enormous challenge, requiring the application of sensitive biophysical methodology. Accordingly, in this study, we exploited the speed and sensitivity of nanoelectrospray (nano-ESI) native mass spectrometry to identify a small collection of fragments which bind to the TPR2AB domain of HOP. Follow-up biophysical assessment of a small selection of binding fragments confirmed binding to the single TPR2A domain, and that this binding translated into PPI inhibitory activity between TPR2A and the HSP90 C-terminal domain. An in-silico assessment of binding fragments at the PPI interfacial region, provided valuable structural insight for future fragment elaboration strategies, including the identification of losartan as a weak, albeit dose-dependent inhibitor of the target PPI.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Proteínas HSP70 de Choque Térmico/química , Unión Proteica , Proteínas HSP90 de Choque Térmico/química , Descubrimiento de Drogas , Espectrometría de Masas
14.
Comput Struct Biotechnol J ; 20: 4562-4578, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35989699

RESUMEN

The interaction between the Spike (S) protein of SARS-CoV-2 and the human angiotensin converting enzyme 2 (hACE2) is essential for infection, and is a target for neutralizing antibodies. Consequently, selection of mutations in the S protein is expected to be driven by the impact on the interaction with hACE2 and antibody escape. Here, for the first time, we systematically characterized the collective effects of mutations in each of the Omicron sub-lineages (BA.1, BA.2, BA.3 and BA.4) on both the viral S protein receptor binding domain (RBD) and the hACE2 protein using post molecular dynamics studies and dynamic residue network (DRN) analysis. Our analysis suggested that Omicron sub-lineage mutations result in altered physicochemical properties that change conformational flexibility compared to the reference structure, and may contribute to antibody escape. We also observed changes in the hACE2 substrate binding groove in some sub-lineages. Notably, we identified unique allosteric communication paths in the reference protein complex formed by the DRN metrics betweenness centrality and eigencentrality hubs, originating from the RBD core traversing the receptor binding motif of the S protein and the N-terminal domain of the hACE2 to the active site. We showed allosteric changes in residue network paths in both the RBD and hACE2 proteins due to Omicron sub-lineage mutations. Taken together, these data suggest progressive evolution of the Omicron S protein RBD in sub-lineages towards a more efficient interaction with the hACE2 receptor which may account for the increased transmissibility of Omicron variants.

15.
Biomolecules ; 12(8)2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892329

RESUMEN

Heat shock protein 90 (Hsp90) is one of the major guardians of cellular protein homeostasis, through its specialized molecular chaperone properties. While Hsp90 has been extensively studied in many prokaryotic and higher eukaryotic model organisms, its structural, functional, and biological properties in parasitic protozoans are less well defined. Hsp90 collaborates with a wide range of co-chaperones that fine-tune its protein folding pathway. Co-chaperones play many roles in the regulation of Hsp90, including selective targeting of client proteins, and the modulation of its ATPase activity, conformational changes, and post-translational modifications. Plasmodium falciparum is responsible for the most lethal form of human malaria. The survival of the malaria parasite inside the host and the vector depends on the action of molecular chaperones. The major cytosolic P. falciparum Hsp90 (PfHsp90) is known to play an essential role in the development of the parasite, particularly during the intra-erythrocytic stage in the human host. Although PfHsp90 shares significant sequence and structural similarity with human Hsp90, it has several major structural and functional differences. Furthermore, its co-chaperone network appears to be substantially different to that of the human host, with the potential absence of a key homolog. Indeed, PfHsp90 and its interface with co-chaperones represent potential drug targets for antimalarial drug discovery. In this review, we critically summarize the current understanding of the properties of Hsp90, and the associated co-chaperones of the malaria parasite.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Malaria Falciparum , Chaperonas Moleculares , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Malaria Falciparum/parasitología , Chaperonas Moleculares/metabolismo , Plasmodium falciparum/metabolismo
16.
ChemistryOpen ; 11(7): e202200037, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35856692

RESUMEN

A novel alternative route to access rhenium(V)-phthalocyanine complexes through direct metalation of metal-free phthalocyanines (H2 Pcs) with a rhenium(VII) salt in the presence of various two-electron reducing agents is presented. Direct ion metalation of tetraamino- or tetranitrophthalocyanine with perrhenate (ReO4- ) in the presence of triphenylphosphine led to oxidative decomposition of the H2 Pcs, giving their respective phthalonitriles. Conversely, treatment of H2 Pcs with ReO4- employing sodium metabisulfite yielded the desired ReV O-Pc complex. Finally, reaction of H2 Pcs with ReO4- and NaBH4 as reducing agent led to the formation of rhenium oxide (Rex Oy ) nanoparticles (NPs). The NP synthesis was optimised, and the Rex Oy NPs were capped with folic acid (FA) conjugated with tetraaminophthalocyanine (TAPc) to enhance their cancer cell targeting ability. The cytotoxicity profile of the resultant Rex Oy -TAPc-FA NPs was assessed and found to be greater than 80 % viability in four cell lines, namely, MDA-MB-231, HCC7, HCC1806 and HEK293T. Non-cytotoxic concentrations were determined and employed in cancer cell localization studies. The particle size effect on localization of NPs was also investigated using confocal fluorescence and transmission electron microscopy. The smaller NPs (≈10 nm) were found to exhibit stronger fluorescence properties than the ≈50 nm NPs and exhibited better cell localization ability than the ≈50 nm NPs.


Asunto(s)
Nanopartículas del Metal , Renio , Células HEK293 , Humanos , Isoindoles , Sustancias Reductoras
18.
Molecules ; 26(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801371

RESUMEN

A tailored series of coumarin-based ferrocenyl 1,3-oxazine hybrid compounds was synthesized and investigated for potential antiparasitic activity, drawing inspiration from the established biological efficacy of the constituent chemical motifs. The structural identity of the synthesized compounds was confirmed by common spectroscopic techniques: NMR, HRMS and IR. Biological evaluation studies reveal that the compounds exhibit higher in vitro antiparasitic potency against the chemosensitive malarial strain (3D7 P. falciparum) over the investigated trypanosomiasis causal agent (T. b. brucei 427) with mostly single digit micromolar IC50 values. When read in tandem with the biological performance of previously reported structurally similar non-coumarin, phenyl derivatives (i.e., ferrocenyl 1,3-benzoxazines and α-aminocresols), structure-activity relationship analyses suggest that the presence of the coumarin nucleus is tolerated for biological activity though this may lead to reduced efficacy. Preliminary mechanistic studies with the most promising compound (11b) support hemozoin inhibition and DNA interaction as likely mechanistic modalities by which this class of compounds may act to produce plasmocidal and antitrypanosomal effects.


Asunto(s)
Antimaláricos/farmacología , Antiprotozoarios/farmacología , Cumarinas/química , Compuestos Ferrosos/química , Oxazinas/química , Plasmodium falciparum/efectos de los fármacos , Trypanosoma brucei brucei/efectos de los fármacos , Antimaláricos/química , Antiprotozoarios/química , Proliferación Celular , Supervivencia Celular , Femenino , Humanos , Técnicas In Vitro , Estructura Molecular , Relación Estructura-Actividad , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Células Tumorales Cultivadas
19.
Chembiochem ; 21(18): 2643-2658, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32307798

RESUMEN

The conjugation of organometallic complexes to known bioactive organic frameworks is a proven strategy revered for devising new drug molecules with novel modes of action. This approach holds great promise for the generation of potent drug leads in the quest for therapeutic chemotypes with the potential to overcome the development of clinical resistance. Herein, we present the in vitro antiplasmodial and antiproliferative investigation of ferrocenyl α-aminocresol conjugates assembled by amalgamation of the organometallic ferrocene unit and an α-aminocresol scaffold possessing antimalarial activity. The compounds pursued in the study exhibited higher toxicity towards the chemosensitive (3D7) and -resistant (Dd2) strains of the Plasmodium falciparum parasite than to the human HCC70 triple-negative breast cancer cell line. Indication of cross-resistance was absent for the compounds evaluated against the multi-resistant Dd2 strain. Structure-activity analysis revealed that the phenolic hydroxy group and rotatable σ bond between the α-carbon and NH group of the α-amino-o-cresol skeleton are crucial for the biological activity of the compounds. Spectrophotometric techniques and in silico docking simulations performed on selected derivatives suggest that the compounds show a dual mode of action involving hemozoin inhibition and DNA interaction via minor-groove binding. Lastly, compound 9 a, identified as a possible lead, exhibited preferential binding for the plasmodial DNA isolated from 3D7 P. falciparum trophozoites over the mammalian calf thymus DNA, thereby substantiating the enhanced antiplasmodial activity of the compounds. The presented research demonstrates the strategy of incorporating organometallic complexes into known biologically active organic scaffolds as a viable avenue to fashion novel multimodal compounds with potential to counter the development drug resistance.


Asunto(s)
Antimaláricos/farmacología , Antineoplásicos/farmacología , ADN de Hongos/efectos de los fármacos , Hemoproteínas/antagonistas & inhibidores , Compuestos Organometálicos/farmacología , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/síntesis química , Antimaláricos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cresoles/química , Cresoles/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Ferrosos/química , Compuestos Ferrosos/farmacología , Hemoproteínas/metabolismo , Humanos , Metalocenos/química , Metalocenos/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química
20.
Sci Rep ; 10(1): 4193, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144363

RESUMEN

The regulation of human Arf1 GTPase activity by ArfGEFs that stimulate GDP/GTP exchange and ArfGAPs that mediate GTP hydrolysis has attracted attention for the discovery of Arf1 inhibitors as potential anti-cancer agents. The malaria parasite Plasmodium falciparum encodes a Sec7 domain-containing protein - presumably an ArfGEF - and two putative ArfGAPs, as well as an Arf1 homologue (PfArf1) that is essential for blood-stage parasite viability. However, ArfGEF and ArfGAP-mediated activation/deactivation of PfArf1 has not been demonstrated. In this study, we established an in vitro colorimetric microtiter plate-based assay to detect the activation status of truncated human and P. falciparum Arf1 and used it to demonstrate the activation of both proteins by the Sec7 domain of ARNO, their deactivation by the GAP domain of human ArfGAP1 and the inhibition of the respective reactions by the compounds SecinH3 and QS11. In addition, we found that the GAP domains of both P. falciparum ArfGAPs have activities equivalent to that of human ArfGAP1, but are insensitive to QS11. Library screening identified a novel inhibitor which selectively inhibits one of the P. falciparum GAP domains (IC50 4.7 µM), suggesting that the assay format is suitable for screening compound collections for inhibitors of Arf1 regulatory proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bioensayo/métodos , Colorimetría/métodos , Proteínas Activadoras de GTPasa/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Bacterianas/química , Proteínas Activadoras de GTPasa/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...