Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Ecol Evol ; 39(1): 65-77, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37940503

RESUMEN

While bee-angiosperm mutualisms are widely recognized as foundational partnerships that have shaped the diversity and structure of terrestrial ecosystems, these ancient mutualisms have been underpinned by 'silent third partners': microbes. Here, we propose reframing the canonical bee-angiosperm partnership as a three-way mutualism between bees, microbes, and angiosperms. This new conceptualization casts microbes as active symbionts, processing and protecting pollen-nectar provisions, consolidating nutrients for bee larvae, enhancing floral attractancy, facilitating plant fertilization, and defending bees and plants from pathogens. In exchange, bees and angiosperms provide their microbial associates with food, shelter, and transportation. Such microbial communities represent co-equal partners in tripartite mutualisms with bees and angiosperms, facilitating one of the most important ecological partnerships on land.


Asunto(s)
Magnoliopsida , Microbiota , Abejas , Animales , Simbiosis , Polen , Polinización , Flores
2.
Biochem Biophys Res Commun ; 649: 87-92, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36758483

RESUMEN

Type 2 diabetes (T2D) is associated with low-grade inflammation. Here we investigate if the anti-inflammatory cytokine interleukin-4 (IL-4) affects glucose-stimulated insulin secretion (GSIS) in human islets from non-diabetic (ND) and type-2 diabetic (T2D) donors. We first confirmed that GSIS is reduced in islets from T2D donors. Treatment with IL-4 for 48 h had no further effect on GSIS in these islets but significantly reduced secretion in ND islets. Acute treatment with IL-4 for 1 h had no effect on GSIS in ND islets which led us to suspect that IL-4 affects a slow cellular mechanism such as gene transcription. IL-4 has been reported to regulate miR-378a-3p and, indeed, we found that this microRNA was increased with IL-4 treatment. However, overexpression of miR-378a-3p in the human beta cell line EndoC-ßH1 did not affect GSIS. MiR-378a-3p is transcribed from the same gene as peroxisome proliferator-activated receptor gamma co-activator 1 beta (PCG-1ß) and we found that IL-4 treatment showed a clear tendency to increased gene expression of PCG-1ß. PCG-1ß is a co-activator of peroxisome proliferator-activated receptor gamma (PPARγ) and, the gene expression of PPARγ was also increased with IL-4 treatment. Our data suggests that the protective role of IL-4 on beta cell survival comes at the cost of lowered insulin secretion, presumably involving the PPARγ-pathway.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , MicroARNs , Humanos , Secreción de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Interleucina-4/farmacología , Interleucina-4/metabolismo , PPAR gamma/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Islotes Pancreáticos/metabolismo
3.
Surg Neurol Int ; 13: 247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35855159

RESUMEN

Background: Despite a reduction in stroke incidence and age-standardized death rates, stroke remains a leading cause of death and disability worldwide. Significant interest in recent years has focused on the microbiota-host interaction because accumulating evidence has revealed myriad ways in which bacteria may contribute to risk of stroke and adverse outcomes after stroke. The emergence of endovascular thrombectomy as a treatment provides a unique opportunity to utilize thrombus retrieved from cerebral arteries to fill knowledge gaps about the influence of bacteria on stroke pathophysiology. While bacterial signatures have been confirmed in cerebral thrombi, the exact nature of the pathogenesis has not been established. Methods: Thrombi were obtained from a cohort of adult ischemic stroke patients during standard of care thrombectomy. After DNA extraction and quantification, thrombi underwent 16S rRNA amplicon-based metagenomic sequencing, followed by bioinformatics processing. Taxonomic identification of bacterial colonies isolated on Agar plates from plated suspension was performed using DNA extraction and full length 16S Sanger sequencing. Results: A broad diversity of bacterial signatures was identified in specimens, primarily of cariogenic origin. Conclusion: In this small study, we demonstrate proof of concept and technical feasibility for amplicon-based metagenomic sequencing of arterial thrombi and briefly discuss preliminary findings, challenges, and near-term translational opportunities for thrombus genomics.

4.
Mol Psychiatry ; 27(8): 3533-3543, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35418601

RESUMEN

Liver-generated plasma apolipoprotein E (apoE) does not enter the brain but nonetheless correlates with Alzheimer's disease (AD) risk and AD biomarker levels. Carriers of APOEε4, the strongest genetic AD risk factor, exhibit lower plasma apoE and altered brain integrity already at mid-life versus non-APOEε4 carriers. Whether altered plasma liver-derived apoE or specifically an APOEε4 liver phenotype promotes neurodegeneration is unknown. Here we investigated the brains of Fah-/-, Rag2-/-, Il2rg-/- mice on the Non-Obese Diabetic (NOD) background (FRGN) with humanized-livers of an AD risk-associated APOE ε4/ε4 versus an APOE ε2/ε3 genotype. Reduced endogenous mouse apoE levels in the brains of APOE ε4/ε4 liver mice were accompanied by various changes in markers of synaptic integrity, neuroinflammation and insulin signaling. Plasma apoE4 levels were associated with unfavorable changes in several of the assessed markers. These results propose a previously unexplored role of the liver in the APOEε4-associated risk of neurodegenerative disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Animales , Ratones , Apolipoproteína E4/genética , Ratones Endogámicos NOD , Apolipoproteínas E/genética , Encéfalo/metabolismo , Enfermedad de Alzheimer/genética , Genotipo , Biomarcadores , Hígado/metabolismo
5.
J Bacteriol ; 204(5): e0004222, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35404110

RESUMEN

Streptococcus mutans is considered a primary etiologic agent of dental caries, which is the most common chronic infectious disease worldwide. S. mutans B04Sm5 was recently shown to produce reutericyclins and mutanocyclin through the muc biosynthetic gene cluster and to utilize reutericyclins to inhibit the growth of neighboring commensal streptococci. In this study, examination of S. mutans and muc phylogeny suggested evolution of an ancestral S. mutans muc into three lineages within one S. mutans clade and then horizontal transfer of muc to other S. mutans clades. The roles of the mucG and mucH transcriptional regulators and the mucI transporter were also examined. mucH was demonstrated to encode a transcriptional activator of muc. mucH deletion reduced production of mutanocyclin and reutericyclins and eliminated the impaired growth and inhibition of neighboring streptococci phenotypes, which are associated with reutericyclin production. ΔmucG had increased mutanocyclin and reutericyclin production, which impaired growth and increased the ability to inhibit neighboring streptococci. However, deletion of mucG also caused reduced expression of mucD, mucE, and mucI. Deletion of mucI reduced mutanocyclin and reutericylin production but enhanced growth, suggesting that mucI may not transport reutericyclin as its homolog does in Limosilactobacillus reuteri. Further research is needed to determine the roles of mucG and mucI and to identify any cofactors affecting the activity of the mucG and mucH regulators. Overall, this study provided pangenome and phylogenetic analyses that serve as a resource for S. mutans research and began elucidation of the regulation of reutericyclins and mutanocyclin production in S. mutans. IMPORTANCE S. mutans must be able to outcompete neighboring organisms in its ecological niche in order to cause dental caries. S. mutans B04Sm5 inhibited the growth of neighboring commensal streptococci through production of reutericyclins via the muc biosynthetic gene cluster. In this study, an S. mutans pangenome database and updated phylogenetic tree were generated that will serve as valuable resources for the S. mutans research community and that provide insights into the carriage and evolution of S. mutans muc. The MucG and MucH regulators, and the MucI transporter, were shown to modulate production of reutericyclins and mutanocyclin. These genes also affected the ability of S. mutans to inhibit neighboring commensals, suggesting that they may play a role in S. mutans virulence.


Asunto(s)
Caries Dental , Streptococcus mutans , Biopelículas , Humanos , Filogenia , Streptococcus mutans/metabolismo , Ácido Tenuazónico/análogos & derivados , Ácido Tenuazónico/metabolismo
6.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34769481

RESUMEN

Ecological networking and in vitro studies predict that anaerobic, mucus-degrading bacteria are keystone species in cystic fibrosis (CF) microbiomes. The metabolic byproducts from these bacteria facilitate the colonization and growth of CF pathogens like Pseudomonas aeruginosa. Here, a multi-omics study informed the control of putative anaerobic keystone species during a transition in antibiotic therapy of a CF patient. A quantitative metagenomics approach combining sequence data with epifluorescence microscopy showed that during periods of rapid lung function loss, the patient's lung microbiome was dominated by the anaerobic, mucus-degrading bacteria belonging to Streptococcus, Veillonella, and Prevotella genera. Untargeted metabolomics and community cultures identified high rates of fermentation in these sputa, with the accumulation of lactic acid, citric acid, and acetic acid. P. aeruginosa utilized these fermentation products for growth, as indicated by quantitative transcriptomics data. Transcription levels of P. aeruginosa genes for the utilization of fermentation products were proportional to the abundance of anaerobic bacteria. Clindamycin therapy targeting Gram-positive anaerobes rapidly suppressed anaerobic bacteria and the accumulation of fermentation products. Clindamycin also lowered the abundance and transcription of P. aeruginosa, even though this patient's strain was resistant to this antibiotic. The treatment stabilized the patient's lung function and improved respiratory health for two months, lengthening by a factor of four the between-hospitalization time for this patient. Killing anaerobes indirectly limited the growth of P. aeruginosa by disrupting the cross-feeding of fermentation products. This case study supports the hypothesis that facultative anaerobes operated as keystone species in this CF microbiome. Personalized multi-omics may become a viable approach for routine clinical diagnostics in the future, providing critical information to inform treatment decisions.


Asunto(s)
Fibrosis Quística/microbiología , Metagenómica/métodos , Microbiota , Adulto , Antibacterianos/uso terapéutico , Fibrosis Quística/complicaciones , Fibrosis Quística/terapia , Genómica/métodos , Humanos , Pulmón/microbiología , Masculino , Metabolómica/métodos , Microbiota/genética , Pruebas de Función Respiratoria , Insuficiencia Respiratoria/genética , Insuficiencia Respiratoria/metabolismo , Insuficiencia Respiratoria/microbiología , Insuficiencia Respiratoria/terapia , Esputo/microbiología
7.
Methods Mol Biol ; 2327: 161-189, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34410645

RESUMEN

Small molecules are a primary communication media of the microbial world, and play crucial, yet largely unidentified, roles in microbial ecology and disease pathogenesis. Many small molecules are produced by biosynthetic gene clusters, which can be predicted and analyzed computationally given a genome. A recent study examined the biosynthetic repertoire of the oral microbiome and cross-referenced this information against the disease status of the human host, providing leads for biosynthetic gene clusters, and their natural products, which may be key in the oral microbial ecology affecting dental caries and periodontitis. This chapter provides a step-by-step tutorial to bioinformatically to locate biosynthetic gene clusters within genomes, predict the type of natural products that are produced, and cross-reference the identified biosynthetic gene clusters to microbiomes associated with disease or health.


Asunto(s)
Caries Dental , Microbiota , Productos Biológicos , Susceptibilidad a Caries Dentarias , Humanos , Familia de Multigenes , Streptococcus mutans
8.
J Alzheimers Dis ; 81(1): 339-354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33814450

RESUMEN

BACKGROUND: Altered cerebral glucose metabolism, especially prominent in APOE ɛ4 carriers, occurs years prior to symptoms in Alzheimer's disease (AD). We recently found an association between a higher ratio of plasma apolipoprotein E4 (apoE4) over apoE3, and cerebral glucose hypometabolism in cognitively healthy APOE ɛ3/ɛ4 subjects. Plasma apoE does not cross the blood-brain barrier, hence we speculate that apoE is linked to peripheral glucose metabolism which is known to affect glucose metabolism in the brain. OBJECTIVE: Explore potential associations between levels of plasma insulin and glucose with previously acquired plasma apoE, cerebral metabolic rate of glucose (CMRgl), gray matter volume, and neuropsychological test scores. METHODS: Plasma insulin and glucose levels were determined by ELISA and a glucose oxidase assay whereas apoE levels were earlier quantified by mass-spectrometry in 128 cognitively healthy APOE ɛ3/ɛ4 subjects. Twenty-five study subjects had previously undergone FDG-PET and structural MRI. RESULTS: Lower plasma apoE3 associated with higher plasma glucose but not insulin in male subjects and subjects with a body mass index above 25. Negative correlations were found between plasma glucose and CMRgl in the left prefrontal and bilateral occipital regions. These associations may have functional implications since glucose levels in turn were negatively associated with neuropsychological test scores. CONCLUSION: Plasma apoE3 but not apoE4 may be involved in insulin-independent processes governing plasma glucose levels. Higher plasma glucose, which negatively affects brain glucose metabolism, was associated with lower plasma apoE levels in APOE ɛ3/ɛ4 subjects. High plasma glucose and low apoE levels may be a hazardous combination leading to an increased risk of AD.


Asunto(s)
Apolipoproteína E3/sangre , Apolipoproteína E4/genética , Glucemia/análisis , Anciano , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E3/genética , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Heterocigoto , Humanos , Insulina/sangre , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas
10.
Front Oral Health ; 2: 796140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35048077

RESUMEN

The human oral microbiome consists of diverse microbes actively communicating and interacting through a variety of biochemical mechanisms. Dental caries is a major public health issue caused by fermentable carbohydrate consumption that leads to dysbiosis of the oral microbiome. Streptococcus mutans is a known major contributor to caries pathogenesis, due to its exceptional ability to form biofilms in the presence of sucrose, as well as to its acidophilic lifestyle. S. mutans can also kill competing bacteria, which are typically health associated, through the production of bacteriocins and other small molecules. A subset of S. mutans strains encode the muc biosynthetic gene cluster (BGC), which was recently shown to produce the tetramic acids, mutanocyclin and reutericyclins A, B, and C. Reutericyclin A displayed strong antimicrobial activity and mutanocyclin appeared to be anti-inflammatory; however the effect of these compounds, and the carriage of muc by S. mutans, on the ecology of the oral microbiota is not known, and was examined here using a previously developed in vitro biofilm model derived from human saliva. While reutericyclin significantly inhibited in vitro biofilm formation and acid production at sub-nanomolar concentrations, mutanocyclin did not present any activity until the high micromolar range. 16S rRNA gene sequencing revealed that reutericyclin drastically altered the biofilm community composition, while mutanocyclin showed a more specific effect, reducing the relative abundance of cariogenic Limosilactobacillus fermentum. Mutanocyclin or reutericyclin produced by the S. mutans strains amended to the community did not appear to affect the community in the same way as the purified compounds, although the results were somewhat confounded by the differing growth rates of the S. mutans strains. Regardless of the strain added, the addition of S. mutans to the in vitro community significantly increased the abundance of S. mutans and Veillonella infantium, only. Overall, this study illustrates that reutericyclin A and mutanocyclin do impact the ecology of a complex in vitro oral biofilm; however, further research is needed to determine the extent to which the production of these compounds affects the virulence of S. mutans.

11.
Genome Res ; 31(1): 64-74, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33239396

RESUMEN

Dental caries, the most common chronic infectious disease worldwide, has a complex etiology involving the interplay of microbial and host factors that are not completely understood. In this study, the oral microbiome and 38 host cytokines and chemokines were analyzed across 23 children with caries and 24 children with healthy dentition. De novo assembly of metagenomic sequencing obtained 527 metagenome-assembled genomes (MAGs), representing 150 bacterial species. Forty-two of these species had no genomes in public repositories, thereby representing novel taxa. These new genomes greatly expanded the known pangenomes of many oral clades, including the enigmatic Saccharibacteria clades G3 and G6, which had distinct functional repertoires compared to other oral Saccharibacteria. Saccharibacteria are understood to be obligate epibionts, which are dependent on host bacteria. These data suggest that the various Saccharibacteria clades may rely on their hosts for highly distinct metabolic requirements, which would have significant evolutionary and ecological implications. Across the study group, Rothia, Neisseria, and Haemophilus spp. were associated with good dental health, whereas Prevotella spp., Streptococcus mutans, and Human herpesvirus 4 (Epstein-Barr virus [EBV]) were more prevalent in children with caries. Finally, 10 of the host immunological markers were significantly elevated in the caries group, and co-occurrence analysis provided an atlas of potential relationships between microbes and host immunological molecules. Overall, this study illustrated the oral microbiome at an unprecedented resolution and contributed several leads for further study that will increase the understanding of caries pathogenesis and guide therapeutic development.


Asunto(s)
Caries Dental , Metagenómica , Microbiota , Bacterias , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Humanos , Microbiota/genética
13.
Microb Ecol ; 82(4): 1030-1046, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33155101

RESUMEN

The human microbiome has been the focus of numerous research efforts to elucidate the pathogenesis of human diseases including cancer. Oral cancer mortality is high when compared with other cancers, as diagnosis often occurs during late stages. Its prevalence has increased in the USA over the past decade and accounts for over 40,000 new cancer patients each year. Additionally, oral cancer pathogenesis is not fully understood and is likely multifactorial. To unravel the relationships that are associated with the oral microbiome and their virulence factors, we used 16S rDNA and metagenomic sequencing to characterize the microbial composition and functional content in oral squamous cell carcinoma (OSCC) tumor tissue, non-tumor tissue, and saliva from 18 OSCC patients. Results indicate a higher number of bacteria belonging to the Fusobacteria, Bacteroidetes, and Firmicutes phyla associated with tumor tissue when compared with all other sample types. Additionally, saliva metaproteomics revealed a significant increase of Prevotella in five OSCC subjects, while Corynebacterium was mostly associated with ten healthy subjects. Lastly, we determined that there are adhesion and virulence factors associated with Streptococcus gordonii as well as from known oral pathogens belonging to the Fusobacterium genera found mostly in OSCC tissues. From these results, we propose that not only will the methods utilized in this study drastically improve OSCC diagnostics, but the organisms and specific virulence factors from the phyla detected in tumor tissue may be excellent biomarkers for characterizing disease progression.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , ARN Ribosómico 16S/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Factores de Virulencia/genética
14.
Microbiol Resour Announc ; 9(47)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33214302

RESUMEN

Streptococcus mutans strain B04Sm5 was recently shown to inhibit the growth of neighboring commensal bacteria using reutericyclin, an acylated tetramic acid produced by the muc biosynthetic gene cluster. Here, a complete genome sequence of B04Sm5 is reported.

15.
mSystems ; 5(2)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345739

RESUMEN

Next-generation sequencing studies of saliva and dental plaque from subjects in both healthy and diseased states have identified bacteria belonging to the Rothia genus as ubiquitous members of the oral microbiota. To gain a deeper understanding of molecular mechanisms underlying the chemical ecology of this unexplored group, we applied a genome mining approach that targets functionally important biosynthetic gene clusters (BGCs). All 45 genomes that were mined, representing Rothia mucilaginosa, Rothia dentocariosa, and Rothia aeria, harbored a catechol-siderophore-like BGC. To explore siderophore production further, we grew the previously characterized R. mucilaginosa ATCC 25296 in liquid cultures, amended with glycerol, which led to the identification of the archetype siderophore enterobactin by using tandem liquid chromatography-mass spectrometry (LC-MS/MS), high-performance liquid chromatography (HPLC), and nuclear magnetic resonance (NMR) spectroscopy. Normally attributed to pathogenic gut bacteria, R. mucilaginosa is the first commensal oral bacterium found to produce enterobactin. Cocultivation studies including R. mucilaginosa or purified enterobactin revealed that enterobactin reduced growth of certain strains of cariogenic Streptococcus mutans and pathogenic strains of Staphylococcus aureus Commensal oral bacteria were either unaffected, reduced in growth, or induced to grow adjacent to enterobactin-producing R. mucilaginosa or the pure compound. Taken together with Rothia's known capacity to ferment a variety of carbohydrates and amino acids, our findings of enterobactin production add an additional level of explanation to R. mucilaginosa's prevalence in the oral cavity. Enterobactin is the strongest Fe(III) binding siderophore known, and its role in oral health requires further investigation.IMPORTANCE The communication language of the human oral microbiota is vastly underexplored. However, a few studies have shown that specialized small molecules encoded by BGCs have critical roles such as in colonization resistance against pathogens and quorum sensing. Here, by using a genome mining approach in combination with compound screening of growth cultures, we identified that the commensal oral community member R. mucilaginosa harbors a catecholate-siderophore BGC, which is responsible for the biosynthesis of enterobactin. The iron-scavenging role of enterobactin is known to have positive effects on the host's iron pool and negative effects on host immune function; however, its role in oral health remains unexplored. R. mucilaginosa was previously identified as an abundant community member in cystic fibrosis, where bacterial iron cycling plays a major role in virulence development. With respect to iron's broad biological importance, iron-chelating enterobactin may explain R. mucilaginosa's colonization success in both health and disease.

16.
Diabetes ; 69(6): 1193-1205, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32198214

RESUMEN

Obesity is a risk factor for type 2 diabetes (T2D); however, not all obese individuals develop the disease. In this study, we aimed to investigate the cause of differential insulin secretion capacity of pancreatic islets from donors with T2D and non-T2D (ND), especially obese donors (BMI ≥30 kg/m2). Islets from obese donors with T2D had reduced insulin secretion, decreased ß-cell exocytosis, and higher expression of fatty acid translocase CD36. We tested the hypothesis that CD36 is a key molecule in the reduced insulin secretion capacity. Indeed, CD36 overexpression led to decreased insulin secretion, impaired exocytosis, and reduced granule docking. This was accompanied by reduced expression of the exocytotic proteins SNAP25, STXBP1, and VAMP2, likely because CD36 induced downregulation of the insulin receptor substrate (IRS) proteins, suppressed the insulin-signaling phosphatidylinositol 3-kinase/AKT pathway, and increased nuclear localization of the transcription factor FoxO1. CD36 antibody treatment of the human ß-cell line EndoC-ßH1 increased IRS1 and exocytotic protein levels, improved granule docking, and enhanced insulin secretion. Our results demonstrate that ß-cells from obese donors with T2D have dysfunctional exocytosis likely due to an abnormal lipid handling represented by differential CD36 expression. Hence, CD36 could be a key molecule to limit ß-cell function in T2D associated with obesity.


Asunto(s)
Antígenos CD36/metabolismo , Diabetes Mellitus Tipo 2/etiología , Exocitosis/fisiología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidad/complicaciones , Anticuerpos/farmacología , Antígenos CD36/genética , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Islotes Pancreáticos/citología
17.
ACS Infect Dis ; 6(4): 563-571, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-31906623

RESUMEN

Streptococcus mutans is a common constituent of dental plaque and a major etiologic agent of dental caries (tooth decay). In this study, we elucidated the biosynthetic pathway encoded by muc, a hybrid polyketide synthase and nonribosomal peptide synthetase (PKS/NRPS) biosynthetic gene cluster (BGC), present in a number of globally distributed S. mutans strains. The natural products synthesized by muc included three N-acyl tetramic acid compounds (reutericyclin and two novel analogues) and an unacylated tetramic acid (mutanocyclin). Furthermore, the enzyme encoded by mucF was identified as a novel class of membrane-associated aminoacylases and was responsible for the deacylation of reutericyclin to mutanocyclin. A large number of hypothetical proteins across a broad diversity of bacteria were homologous to MucF, suggesting that this may represent a large family of unexplored acylases. Finally, S. mutans utilized the reutericyclin produced by muc to impair the growth of neighboring oral commensal bacteria. Since S. mutans must be able to out-compete these health-associated organisms to persist in the oral microbiota and cause disease, the competitive advantage conferred by muc suggests that this BGC is likely to be involved in S. mutans ecology and therefore dental plaque dysbiosis and the resulting caries pathogenesis.


Asunto(s)
Antibacterianos/metabolismo , Vías Biosintéticas/genética , Microbiota/efectos de los fármacos , Pirrolidinonas/metabolismo , Streptococcus mutans/metabolismo , Simbiosis/efectos de los fármacos , Antibacterianos/biosíntesis , Caries Dental/microbiología , Humanos , Boca/microbiología , Familia de Multigenes , Sintasas Poliquetidas/genética , Streptococcus mutans/genética , Streptococcus mutans/patogenicidad , Ácido Tenuazónico/análogos & derivados , Ácido Tenuazónico/metabolismo
18.
J Alzheimers Dis ; 71(4): 1217-1231, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31524156

RESUMEN

The APOEɛ4 gene variant is the strongest genetic risk factor for Alzheimer's disease (AD), whereas APOEɛ3 conventionally is considered as 'risk neutral' although APOEɛ3-carriers also develop AD. Previous studies have shown that the apolipoprotein E3 (apoE3) isoform occurs as monomers, homodimers and heterodimers with apolipoprotein A-II in human body fluids and brain tissue, but the relevance of a plasma apoE3 monomer/dimer profile to AD is unknown. Here we assessed the distribution of monomers, homodimers and heterodimers in plasma from control subjects and patients with mild cognitive impairment (MCI) and AD with either a homozygous APOEɛ3 (n = 31 control subjects, and n = 14 MCI versus n = 5 AD patients) or APOEɛ4 genotype (n = 1 control subject, n = 21 MCI and n = 7 AD patients). Total plasma apoE levels were lower in APOEɛ4-carriers and overall correlated significantly to CSF Aß42, p(Thr181)-tau and t-tau levels. Apolipoprotein E dimers were only observed in the APOEɛ3-carriers and associated with total plasma apoE levels, negatively correlated to apoE monomers, but were unrelated to plasma homocysteine levels. Importantly, the APOEɛ3-carrying AD patients versus controls exhibited a significant decrease in apoE homodimers (17.8±9.6% versus 26.7±6.3%, p = 0.025) paralleled by an increase in apoE monomers (67.8±18.3% versus 48.5±11.2%, p = 0.008). In the controls, apoE monomers and heterodimers were significantly associated with plasma triglycerides; the apoE heterodimers were also associated with levels of high-density lipoprotein cholesterol. The physiological relevance of apoE dimer formation needs to be further investigated, though the distribution of apoE in monomers and dimers appears to be of relevance to AD in APOEɛ3 subjects.


Asunto(s)
Apolipoproteína E3 , Homocisteína/sangre , Proteínas tau/líquido cefalorraquídeo , Anciano , Enfermedad de Alzheimer/sangre , Apolipoproteína A-II/metabolismo , Apolipoproteína E3/sangre , Apolipoproteína E3/genética , Apolipoproteína E4/sangre , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/sangre , Femenino , Homocigoto , Humanos , Masculino , Estructura Cuaternaria de Proteína
19.
Nat Commun ; 10(1): 2719, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222023

RESUMEN

Differential abundance analysis is controversial throughout microbiome research. Gold standard approaches require laborious measurements of total microbial load, or absolute number of microorganisms, to accurately determine taxonomic shifts. Therefore, most studies rely on relative abundance data. Here, we demonstrate common pitfalls in comparing relative abundance across samples and identify two solutions that reveal microbial changes without the need to estimate total microbial load. We define the notion of "reference frames", which provide deep intuition about the compositional nature of microbiome data. In an oral time series experiment, reference frames alleviate false positives and produce consistent results on both raw and cell-count normalized data. Furthermore, reference frames identify consistent, differentially abundant microbes previously undetected in two independent published datasets from subjects with atopic dermatitis. These methods allow reassessment of published relative abundance data to reveal reproducible microbial changes from standard sequencing output without the need for new assays.


Asunto(s)
Bacterias/aislamiento & purificación , Análisis de Datos , Microbiota/genética , Modelos Biológicos , Bacterias/genética , Carga Bacteriana/normas , Simulación por Computador/normas , Conjuntos de Datos como Asunto , Dermatitis Atópica/microbiología , Estudios de Factibilidad , Voluntarios Sanos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos , Metagenoma/genética , ARN Ribosómico 16S/aislamiento & purificación , Estándares de Referencia , Saliva/microbiología , Microbiología del Suelo
20.
Proc Natl Acad Sci U S A ; 116(17): 8499-8504, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30975748

RESUMEN

It is well-understood that many bacteria have evolved to survive catastrophic events using a variety of mechanisms, which include expression of stress-response genes, quiescence, necrotrophy, and metabolic advantages obtained through mutation. However, the dynamics of individuals leveraging these abilities to gain a competitive advantage in an ecologically complex setting remain unstudied. In this study, we observed the saliva microbiome throughout the ecological perturbation of long-term starvation, allowing only the species best equipped to access and use the limited resources to survive. During the first several days, the community underwent a death phase that resulted in a ∼50-100-fold reduction in the number of viable cells. Interestingly, after this death phase, only three species, Klebsiella pneumoniae, Klebsiella oxytoca, and Providencia alcalifaciens, all members of the family Enterobacteriaceae, appeared to be transcriptionally active and recoverable. Klebsiella are significant human pathogens, frequently resistant to multiple antibiotics, and recently, ectopic colonization of the gut by oral Klebsiella was documented to induce dysbiosis and inflammation. MetaOmics analyses provided several leads for further investigation regarding the ecological success of the Enterobacteriaceae. The isolates accumulated single nucleotide polymorphisms in known growth advantage in stationary phase alleles and produced natural products closely resembling antimicrobial cyclic depsipeptides. The results presented in this study suggest that pathogenic Enterobacteriaceae persist much longer than their more benign neighbors in the salivary microbiome when faced with starvation. This is particularly significant, given that hospital surfaces contaminated with oral fluids, especially sinks and drains, are well-established sources of outbreaks of drug-resistant Enterobacteriaceae.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Klebsiella/fisiología , Viabilidad Microbiana , Boca/microbiología , Providencia/fisiología , Humanos , Saliva/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA