Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(18): 5395-5402, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38684070

RESUMEN

We investigated the role of ligand clustering and density in the activation of natural killer (NK) cells. To that end, we designed reductionist arrays of nanopatterned ligands arranged with different cluster geometries and densities and probed their effects on NK cell activation. We used these arrays as an artificial microenvironment for the stimulation of NK cells and studied the effect of the array geometry on the NK cell immune response. We found that ligand density significantly regulated NK cell activation while ligand clustering had an impact only at a specific density threshold. We also rationalized these findings by introducing a theoretical membrane fluctuation model that considers biomechanical feedback between ligand-receptor bonds and the cell membrane. These findings provide important insight into NK cell mechanobiology, which is fundamentally important and essential for designing immunotherapeutic strategies targeting cancer.


Asunto(s)
Membrana Celular , Células Asesinas Naturales , Células Asesinas Naturales/inmunología , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Ligandos , Activación de Linfocitos , Fenómenos Biomecánicos , Modelos Biológicos
2.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139060

RESUMEN

Natural killer (NK) cells are a vital component of cancer immune surveillance. They provide a rapid and potent immune response, including direct cytotoxicity and mobilization of the immune system, without the need for antigen processing and presentation. NK cells may also be better tolerated than T cell therapy approaches and are susceptible to various gene manipulations. Therefore, NK cells have become the focus of extensive translational research. Gamida Cell's nicotinamide (NAM) platform for cultured NK cells provides an opportunity to enhance the therapeutic potential of NK cells. CD38 is an ectoenzyme ubiquitously expressed on the surface of various hematologic cells, including multiple myeloma (MM). It has been selected as a lead target for numerous monoclonal therapeutic antibodies against MM. Monoclonal antibodies target CD38, resulting in the lysis of MM plasma cells through various antibody-mediated mechanisms such as antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, significantly improving the outcomes of patients with relapsed or refractory MM. However, this therapeutic strategy has inherent limitations, such as the anti-CD38-induced depletion of CD38-expressing NK cells, thus hindering ADCC. We have developed genetically engineered NK cells tailored to treat MM, in which CD38 was knocked-out using CRISPR-Cas9 technology and an enhanced chimeric antigen receptor (CAR) targeting CD38 was introduced using mRNA electroporation. This combined genetic approach allows for an improved cytotoxic activity directed against CD38-expressing MM cells without self-inflicted NK-cell-mediated fratricide. Preliminary results show near-complete abolition of fratricide with a 24-fold reduction in self-lysis from 19% in mock-transfected and untreated NK cells to 0.8% of self-lysis in CD38 knock-out CAR NK cells. Furthermore, we have observed significant enhancements in CD38-mediated activity in vitro, resulting in increased lysis of MM target cell lines. CD38 knock-out CAR NK cells also demonstrated significantly higher levels of NK activation markers in co-cultures with both untreated and αCD38-treated MM cell lines. These NAM-cultured NK cells with the combined genetic approach of CD38 knockout and addition of CD38 CAR represent a promising immunotherapeutic tool to target MM.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Mieloma Múltiple/terapia , Mieloma Múltiple/tratamiento farmacológico , Células Asesinas Naturales , Citotoxicidad Celular Dependiente de Anticuerpos
3.
Cancers (Basel) ; 15(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686697

RESUMEN

Mycosis fungoides (MF) and Sézary syndrome (SS) are the most common types of primary cutaneous T-cell lymphoma (CTCL). Proliferating cell nuclear antigen (PCNA) is expressed on the cell surface of cancer cells (csPCNA), but not on normal cells. It functions as an immune checkpoint ligand by interacting with natural killer (NK) cells through the NK inhibitory receptor NKp44, leading to the inhibition of NK cytotoxicity. A monoclonal antibody (mAb14) was established to detect csPCNA on cancer cells and block their interaction with NKp44. In this study, three CTCL cell lines and peripheral blood mononuclear cells (PBMCs) from patients with SS and healthy donors were analyzed for csPCNA using mAb14, compared to monoclonal antibody PC10, against nuclear PCNA (nPCNA). The following assays were used: immunostaining, imaging flow cytometry, flow cytometry, cell sorting, cell cycle analysis, ELISA, and the NK-cell cytotoxic assay. mAb14 successfully detected PCNA on the membrane and in the cytoplasm of viable CTCL cell lines associated with the G2/M phase. In the Sézary PBMCs, csPCNA was expressed on lymphoma cells that had an atypical morphology and not on normal cells. Furthermore, it was not expressed on PBMCs from healthy donors. In the co-culture of peripheral blood NK (pNK) cells with CTCL lines, mAb14 increased the secretion of IFN-γ, indicating the reactivation of pNK activity. However, mAb14 did not enhance the cytotoxic activity of pNK cells against CTCL cell lines. The unique expression of csPCNA detected by mAb14 suggests that csPCNA and mAb14 may serve as a potential biomarker and tool, respectively, for detecting malignant cells in SS and possibly other CTCL variants.

4.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430528

RESUMEN

Lung cancer cells in the tumor microenvironment facilitate immune evasion that leads to failure of conventional chemotherapies, despite provisionally decided on the genetic diagnosis of patients in a clinical setup. The current study follows three lung cancer patients who underwent "personalized" chemotherapeutic intervention. Patient-derived xenografts (PDXs) were subjected to tumor microarray and treatment screening with chemotherapies, either individually or in combination with the peptide R11-NLS-pep8; this peptide targets both membrane-associated and nuclear PCNA. Ex vivo, employing PDX-derived explants, it was found that combination with R11-NLS-pep8 stimulated antineoplastic effect of chemotherapies that were, although predicted based on the patient's genetic mutation, inactive on their own. Furthermore, treatment in vivo of PDX-bearing mice showed an exactly similar trend in the result, corroborating the finding to be translated into clinical setup.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Ratones , Animales , Sistemas de Liberación de Medicamentos , Péptidos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Microambiente Tumoral , Modelos Animales de Enfermedad
5.
PLoS One ; 17(8): e0272307, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35917302

RESUMEN

The current Covid-19 pandemic has a profound impact on all aspects of our lives. Aside from contagion by aerosols, the presence of the SARS-CoV-2 is ubiquitous on surfaces that millions of people handle daily. Therefore, controlling this pandemic involves the reduction of potential infections via contaminated surfaces. We developed antiviral surfaces by preparing suspensions of copper and cupric oxide nanoparticles in two different polymer matrices, poly(methyl methacrylate) and polyepoxide. For total copper contents as low as 5%, the composite material showed remarkable antiviral properties against the HCoV-OC43 human coronavirus and against a model lentivirus and proved well-resistant to accelerated aging conditions. Importantly, we showed that the Cu/CuO mixture showed optimal performances. This product can be implemented to produce a simple and inexpensive coating with long-term antiviral properties and will open the way to developing surface coatings against a broad spectrum of pathogens including SARS-CoV-2.


Asunto(s)
COVID-19 , Coronavirus Humano OC43 , Nanocompuestos , Antivirales , COVID-19/prevención & control , Cobre/farmacología , Humanos , Pandemias/prevención & control , SARS-CoV-2
6.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35563109

RESUMEN

Multiple Myeloma (MM) is a devastating malignancy that evades immune destruction using multiple mechanisms. The NKp44 receptor interacts with PCNA (Proliferating Cell Nuclear Antigen) and may inhibit NK cells' functions. Here we studied in vitro the expression and function of PCNA on MM cells. First, we show that PCNA is present on the cell membrane of five out of six MM cell lines, using novel anti-PCNA mAb developed to recognize membrane-associated PCNA. Next, we stained primary bone marrow (BM) mononuclear cells from MM patients and showed significant staining of membrane-associated PCNA in the fraction of CD38+CD138+ BM cells that contain the MM cells. Importantly, blocking of the membrane PCNA on MM cells enhanced the activity of NK cells, including IFN-γ-secretion and degranulation. Our results highlight the possible blocking of the NKp44-PCNA immune checkpoint by the mAb 14-25-9 antibody to enhance NK cell responses against MM, providing a novel treatment option.


Asunto(s)
Mieloma Múltiple , Línea Celular Tumoral , Humanos , Células Asesinas Naturales , Mieloma Múltiple/metabolismo , Receptor 2 Gatillante de la Citotoxidad Natural/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo
7.
Antibodies (Basel) ; 10(4)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34842604

RESUMEN

The use of passively-administered neutralizing antibodies is a promising approach for the prevention and treatment of SARS-CoV-2 infection. Antibody-mediated protection may involve immune system recruitment through Fc-dependent activation of effector cells and the complement system. However, the role of Fc-mediated functions in the efficacious in-vivo neutralization of SARS-CoV-2 is not yet clear, and it is of high importance to delineate the role this process plays in antibody-mediated protection. Toward this aim, we have chosen two highly potent SARS-CoV-2 neutralizing human monoclonal antibodies, MD65 and BLN1 that target distinct domains of the spike (RBD and NTD, respectively). The Fc of these antibodies was engineered to include the triple mutation N297G/S298G/T299A that eliminates glycosylation and the binding to FcγR and to the complement system activator C1q. As expected, the virus neutralization activity (in-vitro) of the engineered antibodies was retained. To study the role of Fc-mediated functions, the protective activity of these antibodies was tested against lethal SARS-CoV-2 infection of K18-hACE2 transgenic mice, when treatment was initiated either before or two days post-exposure. Antibody treatment with both Fc-variants similarly rescued the mice from death reduced viral load and prevented signs of morbidity. Taken together, this work provides important insight regarding the contribution of Fc-effector functions in MD65 and BLN1 antibody-mediated protection, which should aid in the future design of effective antibody-based therapies.

8.
Sci Adv ; 7(24)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34117052

RESUMEN

The role of juxtaposition of activating and inhibitory receptors in signal inhibition of cytotoxic lymphocytes remains strongly debated. The challenge lies in the lack of tools that allow simultaneous spatial manipulation of signaling molecules. To circumvent this, we produced a nanoengineered multifunctional platform with molecular-scale spatial control of ligands, which was applied to elucidate KIR2DL1-mediated inhibition of NKG2D signaling-receptors of natural killer cells. This platform was conceived by bimetallic nanodot patterning with molecular-scale registry, followed by a ternary functionalization with distinct moieties. We found that a 40-nm gap between activating and inhibitory ligands provided optimal inhibitory conditions. Supported by theoretical modeling, we interpret these findings as a consequence of the size mismatch and conformational flexibility of ligands in their spatial interaction. This highly versatile approach provides an important insight into the spatial mechanism of inhibitory immune checkpoints, which is essential for the rational design of future immunotherapies.

9.
Small ; 17(14): e2007347, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33719212

RESUMEN

The cytotoxic activity of natural killer (NK) cells is regulated by many chemical and physical cues, whose integration mechanism is still obscure. Here, a multifunctional platform is engineered for NK cell stimulation, to study the effect of the signal integration and spatial heterogeneity on NK cell function. The platform is based on nanowires, whose mechanical compliance and site-selective tip functionalization with antigens produce the physical and chemical stimuli, respectively. The nanowires are confined to micron-sized islands, which induce a splitting of the NK cells into two subpopulations with distinct morphologies and immune responses: NK cells atop the nanowire islands display symmetrical spreading and enhanced activation, whereas cells lying in the straits between the islands develop elongated profiles and show lower activation levels. The demonstrated tunability of NK cell cytotoxicity provides an important insight into the mechanism of their immune function and introduces a novel technological route for the ex vivo shaping of cytotoxic lymphocytes in immunotherapy.


Asunto(s)
Antineoplásicos , Nanocables , Antígenos , Citotoxicidad Inmunológica , Inmunoterapia , Células Asesinas Naturales
10.
ACS Biomater Sci Eng ; 7(1): 122-132, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33455204

RESUMEN

Mechanosensing has been recently explored for T cells and B cells and is believed to be a part of their activation mechanism. Here, we investigated the mechanosensing of the third type of lymphocyte - natural killer (NK) cells, by showing that they modulate their immune activity in response to changes in the stiffness of a stimulating surface. Interestingly, we found that this immune response is bell-shaped and peaks for a stiffness of a few hundreds of kPa. This bell-shaped behavior was observed only for surfaces functionalized with the activating ligand major histocompatibility complex class I polypeptide-related sequence A but not for control surfaces, lacking immunoactive functionalities. We found that stiffness does not affect uniformly all the cells but increases the size of a little group of extra-active cells, which in turn contributes to the overall activation effect of the entire cell population. We further imaged the clustering of costimulatory adapter protein DAP10 on the NK cell membrane and found the same bell-shaped dependence to surface stiffness. Our findings reveal what seems to be ″the tip of the iceberg″ of mechanosensation of NK cells and provide an important insight into the mechanism of their immune signaling.


Asunto(s)
Células Asesinas Naturales , Receptores Inmunológicos , Antígenos de Histocompatibilidad Clase I , Ligandos , Linfocitos T
11.
Sci Adv ; 6(37)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917716

RESUMEN

Recent reports suggest that 10 to 30% of severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) infected patients are asymptomatic and that viral shedding may occur before symptom onset. Therefore, there is an urgent need to increase diagnostic testing capabilities to prevent disease spread. We developed P-BEST, a method for Pooling-Based Efficient SARS-CoV-2 Testing, which identifies all positive subjects within a set of samples using a single round of testing. Each sample is assigned into multiple pools using a combinatorial pooling strategy based on compressed sensing. We pooled sets of 384 samples into 48 pools, providing both an eightfold increase in testing efficiency and an eightfold reduction in test costs, while identifying up to five positive carriers. We then used P-BEST to screen 1115 health care workers using 144 tests. P- BEST provides an efficient and easy-to-implement solution for increasing testing capacity that can be easily integrated into diagnostic laboratories.


Asunto(s)
Infecciones Asintomáticas , Portador Sano/diagnóstico , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Portador Sano/virología , Humanos , Pandemias , SARS-CoV-2 , Esparcimiento de Virus
12.
Artículo en Inglés | MEDLINE | ID: mdl-32211339

RESUMEN

The Ebola Virus (EBOV) glycoprotein (GP) sterically shields cell-membrane ligands to immune receptors such as human leukocyte antigen class-1 (HLA-I) and MHC class I polypeptide-related sequence A (MICA), thus mediating immunity evasion. It was suggested that the abundant N-glycosylation of the EBOV-GP is involved in this steric shielding. We aimed to characterize (i) the GP N-glycosylation sites contributing to the shielding, and (ii) the effect of mutating these sites on immune subversion by the EBOV-GP. The two highly glycosylated domains of GP are the mucin-like domain (MLD) and the glycan cap domain (GCD) with three and six N-glycosylation sites, respectively. We mutated the N-glycosylation sites either in MLD or in GCD or in both domains. We showed that the glycosylation sites in both the MLD and GCD domains contribute to the steric shielding. This was shown for the steric shielding of either HLA-I or MICA. We then employed the fluorescence resonance energy transfer (FRET) method to measure the effect of N-glycosylation site removal on the distance in the cell membrane between the EBOV-GP and HLA-I (HLA.A*0201 allele). We recorded high FRET values for the interaction of CFP-fused HLA.A*0201 and YFP-fused EBOV-GP, demonstrating the very close distance (<10 nm) between these two proteins on the cell membrane of GP-expressing cells. The co-localization of HLA-I and Ebola GP was unaffected by the disruption of steric shielding, as the removal of N-glycosylation sites on Ebola GP revealed similar FRET values with HLA-I. However, these mutations directed to N-glycosylation sites had restored immune cell function otherwise impaired due to steric shielding over immune cell ligands by WT Ebola GP. Overall, we showed that the GP-mediated steric shielding aimed to impair immune function is facilitated by the N-glycans protruding from its MLD and GCD domains, but these N-glycans are not controlling the close distance between GP and its shielded proteins.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Evasión Inmune , Ligandos , Polisacáridos , Proteínas del Envoltorio Viral/genética
13.
EBioMedicine ; 46: 215-226, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31326432

RESUMEN

BACKGROUND: Profiles of immunity developed in filovirus patients and survivors have begun to shed light on antigen-specific cellular immune responses that had been previously under-studied. However, our knowledge of the breadth and length of those responses and the viral targets which mediate long-term memory immunity still lags significantly behind. METHODS: We characterized antigen-specific immune responses in whole blood samples of fifteen years post-infected survivors of the Sudan virus (SUDV) outbreak in Gulu, Uganda (2000-2001). We examined T cell and IgG responses against SUDV complete antigen and four SUDV proteins; glycoprotein (GP), nucleoprotein (NP), and viral protein 30 (VP30), and 40 (VP40). FINDINGS: We found survivors-maintained antigen-specific CD4+ T cell memory immune responses mediated mainly by the viral protein NP. In contrast, activated CD8+ T cell responses were nearly absent in SUDV survivors, regardless of the stimulating antigen used. Analysis of anti-viral humoral immunity revealed antigen-specific IgG antibodies against SUDV and SUDV proteins. Survivor IgGs mediated live SUDV neutralization in vitro and FcγRI and FcγRIII antibody Fc-dependent responses, mainly via antibodies to the viral proteins GP and VP40. INTERPRETATION: We highlight the key role of several proteins, i.e., GP, NP, and VP40, to act as mediators of distinctive and sustained cellular memory immune responses in long-term SUDV survivors. We suggest that the inclusion of these viral proteins in vaccine development may best mimic survivor native memory immune responses with the potential of protecting against viral infection. FUNDS: This research was funded by the Defense Threat Reduction Agency (CB4088) and by the National Institute Of Allergy And Infectious Diseases of the National Institutes of Health under Award Number R01AI111516. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Asunto(s)
Antígenos Virales/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad , Proteínas Virales/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Biomarcadores , Brotes de Enfermedades , Femenino , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Memoria Inmunológica , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Transducción de Señal , Sobrevivientes , Linfocitos T/inmunología , Linfocitos T/metabolismo , Adulto Joven
14.
Cancer Immunol Res ; 7(7): 1120-1134, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31164357

RESUMEN

mAb-based blocking of the immune checkpoints involving the CTLA4-B7 and PD1-PDL1 inhibitory axes enhance T-cell-based adaptive immune responses in patients with cancer. We show here that antitumor responses by natural killer (NK) cells can be enhanced by a checkpoint-blocking mAb, 14-25-9, which we developed against proliferating cell nuclear antigen (PCNA). PCNA is expressed on the surface of cancer cells and acts as an inhibitory ligand for the NK-cell receptor, NKp44-isoform1. We tested for cytoplasmic- and membrane-associated PCNA by FACS- and ImageStream-based staining of cell lines and IHC of human cancer formalin fixed, paraffin embedded tissues. The mAb, 14-25-9, inhibited binding of chimeric NKp44 receptor to PCNA and mostly stained the cytoplasm and membrane of tumor cells, whereas commercial antibody (clone PC10) stained nuclear PCNA. NK functions were measured using ELISA-based IFNγ secretion assays and FACS-based killing assays. The NK92-NKp44-1 cell line and primary human NK cells showed increased IFNγ release upon coincubation with mAb 14-25-9 and various solid tumor cell lines and leukemias. Treatment with 14-25-9 also increased NK cytotoxic activity. In vivo efficacy was evaluated on patient-derived xenografts (PDX)-bearing NSG mice. In PDX-bearing mice, intravenous administration of mAb 14-25-9 increased degranulation (CD107a expression) of intratumorally injected patient autologous or allogeneic NK cells, as well as inhibited tumor growth when treated long term. Our study describes a mAb against the NKp44-PCNA innate immune checkpoint that can enhance NK-cell antitumor activity both in vitro and in vivo.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Citotoxicidad Inmunológica/inmunología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Células Asesinas Naturales/efectos de los fármacos , Receptor 2 Gatillante de la Citotoxidad Natural/antagonistas & inhibidores , Antígeno Nuclear de Célula en Proliferación/química , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Animales , Apoptosis , Proliferación Celular , Citotoxicidad Inmunológica/efectos de los fármacos , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Receptor 2 Gatillante de la Citotoxidad Natural/inmunología , Antígeno Nuclear de Célula en Proliferación/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Adv Mater ; 31(4): e1805954, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30488552

RESUMEN

Cells sense their environment by transducing mechanical stimuli into biochemical signals. Commonly used tools to study cell mechanosensing provide limited spatial and force resolution. Here, a novel nanowire-based platform for monitoring cell forces is reported. Nanowires are functionalized with ligands for cell immunoreceptors, and they are used to explore the mechanosensitivity of natural killer (NK) cells. In particular, it is found that NK cells apply centripetal forces to nanowires, and that the nanowires stimulate cell contraction. Based on the nanowire deformation, it is calculated that cells apply forces of down to 10 pN, which is the smallest value demonstrated so far by microstructured platforms for cell spreading. Furthermore, the roles of: i) nanowire topography and ii) activating ligands in the cell immune function are studied and it is found that only their combination produces enhanced population of activated NK cells. Thus, a mechanosensing mechanism of NK cells is proposed, by which they integrate biochemical and mechanical stimuli into a decision-making machinery analogous to the AND logic gate, whose output is the immune activation. This work reveals unprecedented mechanical aspects of NK cell immune function and introduces an innovative nanomaterial for studying cellular mechanics with unparalleled spatial and mechanical resolution.


Asunto(s)
Antígenos/química , Células Asesinas Naturales/citología , Fenómenos Mecánicos , Nanotecnología/métodos , Nanocables/química , Animales , Fenómenos Biomecánicos , Óxido de Zinc/química
16.
Front Immunol ; 9: 1428, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013549

RESUMEN

The Ebola virus (EBOV) uses evasion mechanisms that directly interfere with host T-cell antiviral responses. By steric shielding of human leukocyte antigen class-1, the Ebola glycoprotein (GP) blocks interaction with T-cell receptors (TCRs), thus rendering T cells unable to attack virus-infected cells. It is likely that this mechanism could promote increased natural killer (NK) cell activity against GP-expressing cells by preventing the engagement of NK inhibitory receptors; however, we found that primary human NK cells were less reactive to GP-expressing HEK293T cells. This was manifested as reduced cytokine secretion, a reduction in NK degranulation, and decreased lysis of GP-expressing target cells. We also demonstrated reduced recognition of GP-expressing cells by recombinant NKG2D and NKp30 receptors. In accordance, we showed a reduced monoclonal antibody-based staining of NKG2D and NKp30 ligands on GP-expressing target cells. Trypsin digestion of the membrane-associated GP led to a recovery of the recognition of membrane-associated NKG2D and NKp30 ligands. We further showed that membrane-associated GP did not shield recognition by KIR2DL receptors; in accordance, GP expression by target cells significantly perturbed signal transduction through activating, but not through inhibitory, receptors. Our results suggest a novel evasion mechanism employed by the EBOV to specifically avoid the NK cell immune response.

17.
ACS Appl Mater Interfaces ; 10(14): 11486-11494, 2018 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-29557634

RESUMEN

Studying how different signaling pathways spatially integrate in cells requires selective manipulation and control of different transmembrane ligand-receptor pairs at the same time. This work explores a novel method for precisely arranging two arbitrarily chosen ligands on a micron-scale two-dimensional pattern. The approach is based on lithographic patterning of Au and TiO2 films, followed by their selective functionalization with Ni-nitrilotriacetic acid-histidine and biotin-avidin chemistries, respectively. The selectivity of chemical and biological functionalizations is demonstrated by X-ray photoelectron spectroscopy and immunofluorescence imaging, respectively. This approach is applied to produce the first type of bifunctional surfaces with controllably positioned ligands for activating the receptors of natural killer (NK) immune cells. NK cells were used as a model system to demonstrate the potency of the surface in guiding site-selective cell attachment and activation. Upon applying the suitable ligand or ligand combination, the surfaces guided the appropriate single- or bifunctional attachment and activation. These encouraging results demonstrate the effectiveness of the system as an experimental platform aimed at the comprehensive understanding of the immunological synapse. The great simplicity, modularity, and specificity of this approach make it applicable for a myriad of combinations of other biomolecules and applications, turning it into the "Swiss knife" of biointerfaces.


Asunto(s)
Células Asesinas Naturales , Avidina , Histidina , Sinapsis Inmunológicas , Ligandos
18.
Sci Rep ; 7(1): 6054, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28729706

RESUMEN

Ebolavirus is a highly lethal pathogen, causing a severe hemorrhagic disease with a high fatality rate. To better understand immune correlates of protection by virus specific IgG, we investigated the evolution of the Fcγ receptors (FcγRs)-activating capabilities of antiviral IgG in serum samples of long recovered survivors. To this end, longitudinal serum samples from survivors of Sudan ebolavirus (SUDV) infection, studied over years, were examined for the presence of Ebola-GP specific IgG subclasses, and for their binding to FcγRs. We developed a cell-based reporter system to quantitate pathogen-specific antibody binding to FcγRIIIA, FcγRIIA, FcγRIIB and FcγRI. With this system, we demonstrate that anti-GP-specific stimulation of the FcγRI reporter by survivors' sera was substantially high one year after acute infection, with a slight reduction in activity over a decade post infection. We further demonstrate that GP-specific IgG1 is by far the seroprevalent subclass that retained and even enhanced its presence in the sera, over ten years post infection; the prevalence of other GP-specific IgG subclasses was considerably reduced over time. In accordance, GP-specific FcγRI reporter response and GP-specific total IgG1 subclass correlated in the studied group of Ebola survivors. These observations are important for further informing Ebola vaccine and therapeutic development.


Asunto(s)
Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/metabolismo , Inmunoglobulina G/inmunología , Receptores de IgG/metabolismo , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos/inmunología , Genes Reporteros , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Humanos , Ratones , Unión Proteica , Receptores de IgG/genética , Estudios Seroepidemiológicos
19.
Oncotarget ; 7(43): 70912-70923, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-27765926

RESUMEN

NKp44 and NKp30 splice variant profiles have been shown to promote diverse cellular functions. Moreover, microenvironment factors such as TGF-ß, IL-15 and IL-18 are able to influence both NKp44 and NKp30 splice variant profiles, leading to cytokine-associated profiles. Placenta and cancerous tissues have many similarities; both are immunologically privileged sites and both share immune tolerance mechanisms to support tissue development. Therefore, we studied the profiles of NKp44 and NKp30 splice variants in these states by comparing (i) decidua from pregnancy disorder and healthy gestation and (ii) matched normal and cancer tissue. Decidua samples had high incidence of both NKp44 and NKp30. In cancerous state it was different; while NKp30 expression was evident in most cancerous and matched normal tissues, NKp44 incidence was lower and was mostly associated with the cancerous tissues. A NKp44-1dominant inhibitory profile predominated in healthy pregnancy gestation. Interestingly, the NKp44-2/3 activation profile becomes the leading profile in spontaneous abortions, whereas balanced NKp44 profiles were observed in preeclampsia. In contrast, a clear preference for the NKp30a/b profile was evident in the 1st trimester decidua, yet no significant differences were observed for NKp30 profiles between healthy gestation and spontaneous abortions/preeclampsia. Both cancerous and matched normal tissues manifested balanced NKp30c inhibitory and NKp30a/b activation profiles with a NKp44-1dominant profile. However, a shift in NKp30 profiles between matched normal and cancer tissue was observed in half of the cases. To summarize, NKp44 and NKp30 splice variants profiles are tissue/condition specific and demonstrate similarity between placenta and cancerous tissues.


Asunto(s)
Decidua/metabolismo , Receptor 2 Gatillante de la Citotoxidad Natural/genética , Receptor 3 Gatillante de la Citotoxidad Natural/genética , Neoplasias/metabolismo , Empalme del ARN , Aborto Espontáneo/inmunología , Aborto Espontáneo/patología , Decidua/inmunología , Decidua/patología , Femenino , Citometría de Flujo , Humanos , Privilegio Inmunológico , Interleucina-15/metabolismo , Interleucina-18/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Receptor 2 Gatillante de la Citotoxidad Natural/inmunología , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Preeclampsia/inmunología , Preeclampsia/patología , Embarazo , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral/inmunología
20.
Oncotarget ; 7(22): 32933-45, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27102296

RESUMEN

NKp44 is a receptor encoded by the NCR2 gene, which is expressed by cytokine-activated natural killer (NK) cells that are involved in anti-AML immunity. NKp44 has three splice variants corresponding to NKp44ITIM+ (NKp44-1) and NKp44ITIM- (NKp44-2, and NKp44-3) isoforms. RNAseq data of AML patients revealed similar survival of NKp46+NKp44+ and NKp46+NKp44- patients. However, if grouped according to the NKp44 splice variant profile, NKp44-1 expression was significantly associated with poor survival of AML patients. Moreover, activation of PBMC from healthy controls showed co-dominant expression of NKp44-1 and NKp44-3, while primary NK clones show more diverse NKp44 splice variant profiles. Cultured primary NK cells resulted in NKp44-1 dominance and impaired function associated with PCNA over-expression by target cells. This impaired functional phenotype could be rescued by blocking of NKp44 receptor. Human NK cell lines revealed co-dominant expression of NKp44-1 and NKp44-3 and showed a functional phenotype that was not inhibited by PCNA over-expression. Furthermore, transfection-based overexpression of NKp44-1, but not NKp44-2/NKp44-3, reversed the endogenous resistance of NK-92 cells to PCNA-mediated inhibition, and resulted in poor formation of stable lytic immune synapses. This research contributes to the understanding of AML prognosis by shedding new light on the functional implications of differential splicing of NKp44.


Asunto(s)
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Receptor 2 Gatillante de la Citotoxidad Natural/genética , Adulto , Estudios de Casos y Controles , Células HeLa , Humanos , Células K562 , Leucemia Mieloide Aguda/metabolismo , Receptor 2 Gatillante de la Citotoxidad Natural/metabolismo , Isoformas de Proteínas , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...