Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
SLAS Discov ; 27(5): 314-322, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35385793

RESUMEN

The solid tumor microenvironment (TME) suppresses immune responses. Three alterations in the TME converge on a pathway triggered by elevated cyclic AMP (cAMP) that suppresses T cell receptor (TCR) signaling. We developed a phenotypic assay to screen for small molecules that interfere with this pathway using TALL-104 human leukemic cytotoxic T lymphocytes pretreated with prostaglandin E2 to elevate cAMP. Beads coated with anti-CD3 antibodies stimulate lytic granule exocytosis, which is detected via binding of an antibody against lysosome associated membrane protein 1 (LAMP-1) measured with flow cytometry. Confirming that the assay can find compounds with desired activity, treating cells with a phorbol ester restores exocytosis. The assay behaves well in 96-well format and we screened a collection of compounds expected to have effects on epigenetic regulatory proteins. Compounds in this collection affected lytic granule exocytosis after 24-hour treatment, but none prevented cAMP from suppressing lytic granule exocytosis. We used a fully automated 384-well version of the assay to screen the Prestwick Compound Library but obtained no confirmed hits. Analyzing this assay's performance reveals two points of interest. First, cytometry offers multiple ways to quantify signals. Z' was higher using percent positive cells than mean fluorescence because the relationship between the two measures saturates, but using percent positive could make it harder to find hits in some assays. Second, variance was higher in positive controls than in negative controls in this assay, which degrades assay performance less than if variance was higher in negative controls.


Asunto(s)
AMP Cíclico , Linfocitos T Citotóxicos , AMP Cíclico/metabolismo , Exocitosis , Citometría de Flujo , Humanos , Transducción de Señal
2.
JAMA Otolaryngol Head Neck Surg ; 145(12): 1137-1143, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045218

RESUMEN

Importance: Prior studies suggest that the use of facial nerve monitoring decreases the rate of immediate postoperative facial nerve weakness in parotid surgery, but published data are lacking on normative values for these parameters or cutoff values to prognosticate facial nerve outcomes. Objective: To identify intraoperative facial nerve monitoring parameters associated with postoperative weakness and to evaluate cutoff values for these parameters under which normal nerve function is more likely. Design, Setting, and Participants: This retrospective case series of 222 adult patients undergoing parotid surgery for benign disease performed with intraoperative nerve monitoring was conducted at an academic medical institution from September 13, 2004, to October 30, 2014. The data analysis was conducted from May 2018 to January 2019. Main Outcomes and Measures: The main outcome measure was facial nerve weakness. Receiver operating characteristic curves were generated to define optimal cut point to maximize the sensitivity and specificity of the stimulation threshold, mechanical events, and spasm events associated with facial nerve weakness. Results: Of 222 participants, 121 were women and 101 were men, with a mean (SD) age of 51 (16) years. The rate of temporary facial nerve paresis of any nerve branch was 45%, and the rate of permanent paralysis was 1.3%. The mean predissection threshold was 0.22 milliamperes (mA) (range, 0.1-0.6 mA) and the mean postdissection threshold was 0.24 mA (range, 0.08-1.0 mA). The average number of mechanical events was 9 (range, 0-66), and mean number of spontaneous spasm events was 1 (range, 0-12). Both the postdissection threshold (area under the curve [AUC], 0.69; 95% CI, 0.62-0.77) and the number of mechanical events (AUC, 0.58; 95% CI, 0.50-0.66) were associated with early postoperative facial nerve outcome. The number of spasm events was not associated with facial nerve outcome. The optimal cutoff value for the threshold was 0.25 mA, and the optimal cutoff for number of mechanical events was 8. If a threshold of greater than 0.25 mA was paired with more than 8 mechanical events, there was a 77% chance of postoperative nerve weakness. Conversely, if a threshold was 0.25 mA or less and there were 8 mechanical events or less, there was 69% chance of normal postoperative nerve function. No parameters were associated with permanent facial nerve injury. Conclusions and Relevance: Postdissection threshold and the number of mechanical events are associated with immediate postoperative facial nerve function. Accurate prediction of facial nerve function may provide anticipatory guidance to patients and may provide surgeons with intraoperative feedback allowing adjustment in operative techniques and perioperative management.


Asunto(s)
Electromiografía/métodos , Traumatismos del Nervio Facial/prevención & control , Monitoreo Intraoperatorio/métodos , Procedimientos Neuroquirúrgicos , Glándula Parótida/cirugía , Neoplasias de la Parótida/cirugía , Nervio Facial/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Glándula Parótida/inervación , Estudios Retrospectivos
4.
SLAS Discov ; 23(7): 751-760, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29842834

RESUMEN

Classical therapeutic regimens are subject to toxicity, low efficacy, and/or the development of drug resistance. Thus, the discovery of synergistic drug combinations would permit treatment with lower, tolerable dosages of each agent and restored sensitivity. We describe the development and use of the SynScreen software application, which allows for visual and mathematical determinations of compound concentrations that produce super-additive effects. This software uses nonlinear regression fits of dose responses to determine synergism by the Bliss independence and Loewe additivity analysis models. We demonstrate the utility of SynScreen with data analysis from in vitro high-throughput flow cytometry (HTFC) combination screens with repurposed drugs and multiplexed synergy analysis of multiple biologic parameters in parallel. The applicability of SynScreen was confirmed by testing open-source data sets used in published drug combination literature. A key benefit of SynScreen for high-throughput drug combination screening is that observed measurements are graphically depicted in comparison with a three-dimensional surface that represents the theoretical responses at which Bliss additivity would occur. These images and summary tables for the calculated drug interactions are automatically exported. This allows for substantial data sets to be visually assessed, expediting the quick identification of efficacious drug combinations and thereby facilitating the design of confirmatory studies and clinical trials.


Asunto(s)
Descubrimiento de Drogas/métodos , Citometría de Flujo , Ensayos Analíticos de Alto Rendimiento , Programas Informáticos , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Reproducibilidad de los Resultados
5.
ACS Chem Biol ; 13(6): 1514-1524, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29746086

RESUMEN

Ras and Ras-related small GTPases are key regulators of diverse cellular functions that impact cell growth, survival, motility, morphogenesis, and differentiation. They are important targets for studies of disease mechanisms as well as drug discovery. Here, we report the characterization of small molecule agonists of one or more of six Rho, Rab, and Ras family GTPases that were first identified through flow cytometry-based, multiplexed high-throughput screening of 200000 compounds. The activators were categorized into three distinct chemical families that are represented by three lead compounds having the highest activity. Virtual screening predicted additional compounds with potential GTPase activating properties. Secondary dose-response assays performed on compounds identified through these screens confirmed agonist activity of 43 compounds. While the lead and second most active small molecules acted as pan activators of multiple GTPase subfamilies, others showed partial selectivity for Ras and Rab proteins. The compounds did not stimulate nucleotide exchange by guanine nucleotide exchange factors and did not protect against GAP-stimulated GTP hydrolysis. The activating properties were caused by a reversible stabilization of the GTP-bound state and prolonged effector protein interactions. Notably, these compounds were active both in vitro and in cell-based assays, and small molecule-mediated changes in Rho GTPase activities were directly coupled to measurable changes in cytoskeletal rearrangements that dictate cell morphology.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas de Unión al GTP rho/agonistas , Actinas/metabolismo , Animales , Activación Enzimática/efectos de los fármacos , Pruebas de Enzimas , Células HeLa , Humanos , Ratones , Estructura Molecular , Ratas , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Células 3T3 Swiss
6.
SLAS Discov ; 23(7): 732-741, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29746793

RESUMEN

Kinase inhibitors have dramatically increased patient survival in a multitude of cancers, including hematological malignancies. However, kinase inhibitors have not yet been integrated into current clinical trials for patients with T-cell-lineage acute lymphoblastic leukemia (T-ALL). In this study, we used a high-throughput flow cytometry (HTFC) approach to test a collection of small-molecule inhibitors, including 26 FDA-approved tyrosine kinase inhibitors in a panel of T-ALL cell lines and patient-derived xenografts. Because hypoxia is known to cause resistance to chemotherapy, we developed a synthetic niche that mimics the low oxygen levels found in leukemic bone marrow to evaluate the effects of hypoxia on the tested inhibitors. Drug sensitivity screening was performed using the Agilent BioCel automated liquid handling system integrated with the HyperCyt HT flow cytometry platform, and the uptake of propidium iodide was used as an indication of cell viability. The HTFC dose-response testing identified several compounds that were efficacious in both normal and hypoxic conditions. This study shows that some clinically approved kinase inhibitors target T-ALL in the hypoxic niche of the bone marrow.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Reposicionamiento de Medicamentos , Citometría de Flujo , Ensayos Analíticos de Alto Rendimiento , Bibliotecas de Moléculas Pequeñas , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos/métodos , Citometría de Flujo/métodos , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
7.
SLAS Discov ; 23(7): 634-645, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29608398

RESUMEN

Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), which infects more than 200,000 people worldwide. Sin Nombre virus (SNV) and Andes virus (ANDV) cause the most severe form of HCPS, with case fatality ratios of 30%-40%. There are no specific therapies or vaccines for SNV. Using high-throughput flow cytometry, we screened the Prestwick Chemical Library for small-molecule inhibitors of the binding interaction between UV-inactivated and fluorescently labeled SNVR18 particles, and decay-accelerating factor (DAF) expressed on Tanoue B cells. Eight confirmed hit compounds from the primary screen were investigated further in secondary screens that included infection inhibition, cytotoxicity, and probe interference. Antimycin emerged as a bona fide hit compound that inhibited cellular infection of the major HCPS (SNV)- and HCPS (Hantaan)-causing viruses. Confirming our assay's ability to detect active compounds, orthogonal testing of the hit compound showed that antimycin binds directly to the virus particle and blocks recapitulation of physiologic integrin activation caused by SNV binding to the integrin PSI domain.


Asunto(s)
Antivirales/farmacología , Citometría de Flujo , Ensayos Analíticos de Alto Rendimiento , Orthohantavirus/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Animales , Biomarcadores , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Citometría de Flujo/métodos , Orthohantavirus/fisiología , Infecciones por Hantavirus/tratamiento farmacológico , Infecciones por Hantavirus/virología , Humanos , Modelos Biológicos , Reproducibilidad de los Resultados , Células Vero
8.
SLAS Discov ; 23(7): 624-633, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29232168

RESUMEN

DNA double-strand breaks (DSBs) are repaired primarily by homologous recombination (HR) or nonhomologous end joining (NHEJ). Compounds that modulate HR have shown promise as cancer therapeutics. The V(D)J recombination reaction, which assembles antigen receptor genes in lymphocytes, is initiated by the introduction of DNA DSBs at two recombining gene segments by the RAG endonuclease, followed by the NHEJ-mediated repair of these DSBs. Here, using HyperCyt automated flow cytometry, we develop a robust high-throughput screening (HTS) assay for NHEJ that utilizes engineered pre-B-cell lines where the V(D)J recombination reaction can be induced and monitored at a single-cell level. This approach, novel in processing four 384-well plates at a time in parallel, was used to screen the National Cancer Institute NeXT library to identify compounds that inhibit V(D)J recombination and NHEJ. Assessment of cell light scattering characteristics at the primary HTS stage (83,536 compounds) enabled elimination of 60% of apparent hits as false positives. Although all the active compounds that we identified had an inhibitory effect on RAG cleavage, we have established this as an approach that could identify compounds that inhibit RAG cleavage or NHEJ using new chemical libraries.


Asunto(s)
Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Roturas del ADN de Doble Cadena/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas/métodos , Citometría de Flujo , Recombinación Homóloga , Humanos , Estructura Molecular , Células Precursoras de Linfocitos B/inmunología , Células Precursoras de Linfocitos B/metabolismo , Recombinación V(D)J
9.
Anal Chem ; 89(18): 9967-9975, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28823146

RESUMEN

Flow cytometry provides highly sensitive multiparameter analysis of cells and particles but has been largely limited to the use of a single focused sample stream. This limits the analytical rate to ∼50K particles/s and the volumetric rate to ∼250 µL/min. Despite the analytical prowess of flow cytometry, there are applications where these rates are insufficient, such as rare cell analysis in high cellular backgrounds (e.g., circulating tumor cells and fetal cells in maternal blood), detection of cells/particles in large dilute samples (e.g., water quality, urine analysis), or high-throughput screening applications. Here we report a highly parallel acoustic flow cytometer that uses an acoustic standing wave to focus particles into 16 parallel analysis points across a 2.3 mm wide optical flow cell. A line-focused laser and wide-field collection optics are used to excite and collect the fluorescence emission of these parallel streams onto a high-speed camera for analysis. With this instrument format and fluorescent microsphere standards, we obtain analysis rates of 100K/s and flow rates of 10 mL/min, while maintaining optical performance comparable to that of a commercial flow cytometer. The results with our initial prototype instrument demonstrate that the integration of key parallelizable components, including the line-focused laser, particle focusing using multinode acoustic standing waves, and a spatially arrayed detector, can increase analytical and volumetric throughputs by orders of magnitude in a compact, simple, and cost-effective platform. Such instruments will be of great value to applications in need of high-throughput yet sensitive flow cytometry analysis.


Asunto(s)
Acústica , Separación Celular , Eritrocitos/citología , Citometría de Flujo , Células Neoplásicas Circulantes/patología , Citometría de Flujo/instrumentación , Fluorescencia , Humanos , Rayos Láser , Fenómenos Ópticos , Tamaño de la Partícula , Propiedades de Superficie
10.
J Periodontol ; 86(12): 1352-63, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26269936

RESUMEN

BACKGROUND: Evidence has shown some improved clinical outcomes and morbidity reduction with the use of lasers for non-surgical periodontal therapy due to ablation, vaporization, hemostasis, and field sterilization. The purpose of this systematic review is to evaluate and compare studies involving lasers as monotherapy or adjunctive to surgical periodontal treatment. METHODS: Electronic and manual searches were conducted by two independent reviewers in several databases for articles written in English up to December 2014. Articles were included in this review if they reported outcomes of surgical periodontal therapy with and without the use of lasers. The primary outcome was probing depth (PD), and secondary outcomes were measured changes in clinical factors such as clinical attachment level (CAL) and gingival recession (GR). For the comparative studies included, the pooled weighted mean difference (WMD) and 95% confidence interval (CI) of each variable were calculated using random-effects meta-analysis. RESULTS: Eight and nine articles were included in the quantitative and qualitative analyses, respectively. Although low-to-moderate risk of bias was detected, high heterogeneity among studies was found. In flap surgery with or without laser treatment, there was no statistically significant difference in primary outcome. Similarly, in guided tissue regeneration (GTR)/enamel matrix derivative (EMD) with and without laser treatment, the WMD of PD was negligible; however, the GTR/EMD group showed better outcomes (P = 0.005) than the laser group. Regarding the secondary outcomes, in the flap surgery group, the WMD of CAL gain was 1.34 mm, and the WMD of GR was -0.24 mm; no significant difference was detected between groups. In GTR/EMD with and without laser treatment, the WMD of CAL gain was 0.10 mm and the WMD of recession was -0.18 mm; again, no significant difference was detected between groups. CONCLUSIONS: The available evidence is insufficient to support the effectiveness of dental lasers as an adjunct to resective or regenerative surgical periodontal therapy. However, precautions must be exercised when interpreting the results of this study because of the small sample size and high heterogeneity among studies.


Asunto(s)
Procedimientos Quirúrgicos Orales , Pérdida de Hueso Alveolar/etiología , Trasplante Óseo/efectos adversos , Proteínas del Esmalte Dental/uso terapéutico , Estudios de Seguimiento , Recesión Gingival , Regeneración Tisular Guiada Periodontal/efectos adversos , Humanos , Pérdida de la Inserción Periodontal , Bolsa Periodontal , Colgajos Quirúrgicos/cirugía , Resultado del Tratamiento
11.
Cell ; 161(6): 1252-65, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26046436

RESUMEN

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.


Asunto(s)
Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , National Institutes of Health (U.S.) , Estados Unidos
12.
J Biomol Screen ; 20(6): 689-707, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25805180

RESUMEN

Modern flow cytometers can make optical measurements of 10 or more parameters per cell at tens of thousands of cells per second and more than five orders of magnitude dynamic range. Although flow cytometry is used in most drug discovery stages, "sip-and-spit" sampling technology has restricted it to low-sample-throughput applications. The advent of HyperCyt sampling technology has recently made possible primary screening applications in which tens of thousands of compounds are analyzed per day. Target-multiplexing methodologies in combination with extended multiparameter analyses enable profiling of lead candidates early in the discovery process, when the greatest numbers of candidates are available for evaluation. The ability to sample small volumes with negligible waste reduces reagent costs, compound usage, and consumption of cells. Improved compound library formatting strategies can further extend primary screening opportunities when samples are scarce. Dozens of targets have been screened in 384- and 1536-well assay formats, predominantly in academic screening lab settings. In concert with commercial platform evolution and trending drug discovery strategies, HyperCyt-based systems are now finding their way into mainstream screening labs. Recent advances in flow-based imaging, mass spectrometry, and parallel sample processing promise dramatically expanded single-cell profiling capabilities to bolster systems-level approaches to drug discovery.


Asunto(s)
Descubrimiento de Drogas/métodos , Citometría de Flujo/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Fenotipo , Bibliotecas de Moléculas Pequeñas
13.
J Biomol Screen ; 20(3): 359-71, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25381253

RESUMEN

We screened the National Institutes of Health's Molecular Libraries Small Molecule Repository for inhibitors of cytotoxic T lymphocyte (CTL) lytic granule exocytosis by measuring binding of an antibody in the extracellular solution to a lysosomal membrane protein (LAMP-1) that is transferred to the plasma membrane by exocytosis. We used TALL-104 human leukemic CTLs stimulated with soluble chemicals. Using high-throughput cluster cytometry to screen 364,202 compounds in a 1536-well plate format, we identified 2404 initial hits: 161 were confirmed on retesting, and dose-response measurements were performed. Seventy-five of those compounds were obtained, and 48 were confirmed active. Experiments were conducted to determine the molecular mechanism of action (MMOA) of the active compounds. Fifteen blocked increases in intracellular calcium >50%. Seven blocked phosphorylation of extracellular signal-regulated kinase (ERK) by upstream mitogen-activated protein kinase kinases >50%. One completely blocked the activity of the calcium-dependent phosphatase calcineurin. None blocked ERK catalytic activity. Eight blocked more than one pathway. For 8 compounds, we were unable to determine an MMOA. The activity of 1 of these compounds was confirmed from powder resupply. We conclude that a screen based on antibody binding to CTLs is a good means of identifying novel candidate immunosuppressants with either known or unknown MMOAs.


Asunto(s)
Exocitosis/efectos de los fármacos , Exocitosis/inmunología , Ensayos Analíticos de Alto Rendimiento , Inmunosupresores/farmacología , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Calcineurina/metabolismo , Calcio/metabolismo , Catálisis , Evaluación Preclínica de Medicamentos , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Fosforilación , Proteína Quinasa C/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas , Linfocitos T Citotóxicos/metabolismo
14.
PLoS Pathog ; 10(6): e1004174, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24945495

RESUMEN

Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the skin is unknown. In a high throughput screen, we identified a small molecule inhibitor (SMI), savirin (S. aureus virulence inhibitor) that disrupted agr-mediated quorum sensing in this pathogen but not in the important skin commensal Staphylococcus epidermidis. Mechanistic studies employing electrophoretic mobility shift assays and a novel AgrA activation reporter strain revealed the transcriptional regulator AgrA as the target of inhibition within the pathogen, preventing virulence gene upregulation. Consistent with its minimal impact on exponential phase growth, including skin microbiota members, savirin did not provoke stress responses or membrane dysfunction induced by conventional antibiotics as determined by transcriptional profiling and membrane potential and integrity studies. Importantly, savirin was efficacious in two murine skin infection models, abating tissue injury and selectively promoting clearance of agr+ but not Δagr bacteria when administered at the time of infection or delayed until maximal abscess development. The mechanism of enhanced host defense involved in part enhanced intracellular killing of agr+ but not Δagr in macrophages and by low pH. Notably, resistance or tolerance to savirin inhibition of agr was not observed after multiple passages either in vivo or in vitro where under the same conditions resistance to growth inhibition was induced after passage with conventional antibiotics. Therefore, chemical inhibitors can selectively target AgrA in S. aureus to promote host defense while sparing agr signaling in S. epidermidis and limiting resistance development.


Asunto(s)
Antibacterianos/uso terapéutico , Proteínas Bacterianas/antagonistas & inhibidores , Inmunidad Innata/efectos de los fármacos , Quinazolinonas/uso terapéutico , Percepción de Quorum/efectos de los fármacos , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Transactivadores/antagonistas & inhibidores , Triazoles/uso terapéutico , Animales , Antibacterianos/efectos adversos , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular Transformada , Descubrimiento de Drogas , Genes Reporteros/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones Pelados , Ratones Noqueados , Conformación Molecular , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida/efectos adversos , Mutación , Fagocitosis/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Quinazolinonas/efectos adversos , Quinazolinonas/química , Quinazolinonas/farmacología , Piel/efectos de los fármacos , Piel/microbiología , Infecciones Cutáneas Estafilocócicas/inmunología , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/inmunología , Staphylococcus aureus/fisiología , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/crecimiento & desarrollo , Staphylococcus epidermidis/inmunología , Staphylococcus epidermidis/fisiología , Transactivadores/química , Transactivadores/genética , Transactivadores/metabolismo , Triazoles/efectos adversos , Triazoles/química , Triazoles/farmacología
15.
PLoS One ; 9(5): e96761, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24804769

RESUMEN

Stroke is a leading cause of death and disability and treatment options are limited. A promising approach to accelerate the development of new therapeutics is the use of high-throughput screening of chemical libraries. Using a cell-based high-throughput oxygen-glucose deprivation (OGD) model, we evaluated 1,200 small molecules for repurposed application in stroke therapy. Isoxsuprine hydrochloride was identified as a potent neuroprotective compound in primary neurons exposed to OGD. Isoxsuprine, a ß2-adrenergic agonist and NR2B subtype-selective N-methyl-D-aspartate (NMDA) receptor antagonist, demonstrated no loss of efficacy when administered up to an hour after reoxygenation in an in vitro stroke model. In an animal model of transient focal ischemia, isoxsuprine significantly reduced infarct volume compared to vehicle (137 ± 18 mm3 versus 279 ± 25 mm3, p < 0.001). Isoxsuprine, a peripheral vasodilator, was FDA approved for the treatment of cerebrovascular insufficiency and peripheral vascular disease. Our demonstration of the significant and novel neuroprotective action of isoxsuprine hydrochloride in an in vivo stroke model and its history of human use suggest that isoxsuprine may be an ideal candidate for further investigation as a potential stroke therapeutic.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Isoxsuprina/uso terapéutico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Isoxsuprina/farmacología , Masculino , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Sprague-Dawley
16.
Comb Chem High Throughput Screen ; 17(3): 256-65, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24409953

RESUMEN

The University of New Mexico Center for Molecular Discovery (UNMCMD) is an academic research center that specializes in discovery using high throughput flow cytometry (HTFC) integrated with virtual screening, as well as knowledge mining and drug informatics. With a primary focus on identifying small molecules that can be used as chemical probes and as leads for drug discovery, it is a central core resource for research and translational activities at UNM that supports implementation and management of funded screening projects as well as "up-front" services such as consulting for project design and implementation, assistance in assay development and generation of preliminary data for pilot projects in support of competitive grant applications. The HTFC platform in current use represents advanced, proprietary technology developed at UNM that is now routinely capable of processing bioassays arrayed in 96-, 384- and 1536-well formats at throughputs of 60,000 or more wells per day. Key programs at UNMCMD include screening of research targets submitted by the international community through NIH's Molecular Libraries Program; a multi-year effort involving translational partnerships at UNM directed towards drug repurposing - identifying new uses for clinically approved drugs; and a recently established personalized medicine initiative for advancing cancer therapy by the application of "smart" oncology drugs in selected patients based on response patterns of their cancer cells in vitro. UNMCMD discoveries, innovation, and translation have contributed to a wealth of inventions, patents, licenses and publications, as well as startup companies, clinical trials and a multiplicity of domestic and international collaborative partnerships to further the research enterprise.


Asunto(s)
Descubrimiento de Drogas , Citometría de Flujo/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Universidades/organización & administración , Alergia e Inmunología/organización & administración , Enfermedades Transmisibles/tratamiento farmacológico , Enfermedades Transmisibles/inmunología , Reposicionamiento de Medicamentos , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Neoplasias/tratamiento farmacológico , New Mexico , Medicina de Precisión , Investigación Biomédica Traslacional , Interfaz Usuario-Computador , Flujo de Trabajo
17.
Molecules ; 18(6): 6408-24, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23722730

RESUMEN

In the past 20 years, synthetic combinatorial methods have fundamentally advanced the ability to synthesize and screen large numbers of compounds for drug discovery and basic research. Mixture-based libraries and positional scanning deconvolution combine two approaches for the rapid identification of specific scaffolds and active ligands. Here we present a quantitative assessment of the screening of 32 positional scanning libraries in the identification of highly specific and selective ligands for two formylpeptide receptors. We also compare and contrast two mixture-based library approaches using a mathematical model to facilitate the selection of active scaffolds and libraries to be pursued for further evaluation. The flexibility demonstrated in the differently formatted mixture-based libraries allows for their screening in a wide range of assays.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Modelos Teóricos , Biblioteca de Péptidos , Receptores de Formil Péptido/antagonistas & inhibidores , Concentración 50 Inhibidora , Ligandos , Péptidos/química , Péptidos/farmacología
18.
Mol Pharmacol ; 84(3): 314-24, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23788657

RESUMEN

The formylpeptide receptor (FPR1) and formylpeptide-like 1 receptor (FPR2) are G protein-coupled receptors that are linked to acute inflammatory responses, malignant glioma stem cell metastasis, and chronic inflammation. Although several N-formyl peptides are known to bind to these receptors, more selective small-molecule, high-affinity ligands are needed for a better understanding of the physiologic roles played by these receptors. High-throughput assays using mixture-based combinatorial libraries represent a unique, highly efficient approach for rapid data acquisition and ligand identification. We report the superiority of this approach in the context of the simultaneous screening of a diverse set of mixture-based small-molecule libraries. We used a single cross-reactive peptide ligand for a duplex flow cytometric screen of FPR1 and FPR2 in color-coded cell lines. Screening 37 different mixture-based combinatorial libraries totaling more than five million small molecules (contained in 5,261 mixture samples) resulted in seven libraries that significantly inhibited activity at the receptors. Using positional scanning deconvolution, selective high-affinity (low nM K(i)) individual compounds were identified from two separate libraries, namely, pyrrolidine bis-diketopiperazine and polyphenyl urea. The most active individual compounds were characterized for their functional activities as agonists or antagonists with the most potent FPR1 agonist and FPR2 antagonist identified to date with an EC50 of 131 nM (4 nM K(i)) and an IC50 of 81 nM (1 nM K(i)), respectively, in intracellular Ca²âº response determinations. Comparative analyses of other previous screening approaches clearly illustrate the efficiency of identifying receptor selective, individual compounds from mixture-based combinatorial libraries.


Asunto(s)
Receptores de Formil Péptido/agonistas , Receptores de Formil Péptido/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Aminoácidos/química , Animales , Calcio/metabolismo , Línea Celular Tumoral , Dicetopiperazinas/síntesis química , Dicetopiperazinas/química , Dicetopiperazinas/farmacología , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Ensayos Analíticos de Alto Rendimiento , Humanos , Péptidos/química , Peptidomiméticos/química , Pirrolidinas/síntesis química , Pirrolidinas/química , Pirrolidinas/farmacología , Ratas , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Estereoisomerismo
19.
J Chem Inf Model ; 53(6): 1475-85, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23705689

RESUMEN

We present a general approach to describe the structure-activity relationships (SAR) of combinatorial data sets with activity for two biological endpoints with emphasis on the rapid identification of substitutions that have a large impact on activity and selectivity. The approach uses dual-activity difference (DAD) maps that represent a visual and quantitative analysis of all pairwise comparisons of one, two, or more substitutions around a molecular template. Scanning the SAR of data sets using DAD maps allows the visual and quantitative identification of activity switches defined as specific substitutions that have an opposite effect on the activity of the compounds against two targets. The approach also rapidly identifies single- and double-target R-cliffs, i.e., compounds where a single or double substitution around the central scaffold dramatically modifies the activity for one or two targets, respectively. The approach introduced in this report can be applied to any analogue series with two biological activity endpoints. To illustrate the approach, we discuss the SAR of 106 pyrrolidine bis-diketopiperazines tested against two formylpeptide receptors obtained from positional scanning deconvolution methods of mixture-based libraries.


Asunto(s)
Dicetopiperazinas/química , Dicetopiperazinas/farmacología , Receptores de Formil Péptido/metabolismo , Relación Estructura-Actividad , Bases de Datos Farmacéuticas , Descubrimiento de Drogas/métodos , Humanos , Pirrolidinas/química , Pirrolidinas/farmacología
20.
Anal Biochem ; 437(1): 77-87, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23470221

RESUMEN

ATP binding cassette (ABC) transmembrane efflux pumps such as P-glycoprotein (ABCB1), multidrug resistance protein 1 (ABCC1), and breast cancer resistance protein (ABCG2) play an important role in anticancer drug resistance. A large number of structurally and functionally diverse compounds act as substrates or modulators of these pumps. In vitro assessment of the affinity of drug candidates for multidrug resistance proteins is central to predict in vivo pharmacokinetics and drug-drug interactions. The objective of this study was to identify and characterize new substrates for these transporters. As part of a collaborative project with Life Technologies, 102 fluorescent probes were investigated in a flow cytometric screen of ABC transporters. The primary screen compared substrate efflux activity in parental cell lines with their corresponding highly expressing resistant counterparts. The fluorescent compound library included a range of excitation/emission profiles and required dual laser excitation as well as multiple fluorescence detection channels. A total of 31 substrates with active efflux in one or more pumps and practical fluorescence response ranges were identified and tested for interaction with eight known inhibitors. This screening approach provides an efficient tool for identification and characterization of new fluorescent substrates for ABCB1, ABCC1, and ABCG2.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/metabolismo , Citometría de Flujo/métodos , Colorantes Fluorescentes/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Línea Celular , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...