Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 32(12): 108166, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32966794

RESUMEN

Effective spatio-temporal control of transcription and replication during S-phase is paramount to maintaining genomic integrity and cell survival. Dysregulation of these systems can lead to conflicts between the transcription and replication machinery, causing DNA damage and cell death. BRD4 allows efficient transcriptional elongation by stimulating phosphorylation of RNA polymerase II (RNAPII). We report that bromodomain and extra-terminal domain (BET) protein loss of function (LOF) causes RNAPII pausing on the chromatin and DNA damage affecting cells in S-phase. This persistent RNAPII-dependent pausing leads to an accumulation of RNA:DNA hybrids (R-loops) at sites of BRD4 occupancy, leading to transcription-replication conflicts (TRCs), DNA damage, and cell death. Finally, our data show that the BRD4 C-terminal domain, which interacts with P-TEFb, is required to prevent R-loop formation and DNA damage caused by BET protein LOF.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/genética , Estructuras R-Loop , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Animales , Proteínas de Ciclo Celular/química , Daño del ADN , Células HEK293 , Células HeLa , Humanos , Mutación con Pérdida de Función/genética , Ratones , Dominios Proteicos , Proteolisis , ARN Polimerasa II/metabolismo , Fase S , Relación Estructura-Actividad , Factores de Transcripción/química
2.
EBioMedicine ; 47: 33-43, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31466914

RESUMEN

BACKGROUND: The dismal survival of glioblastoma (GBM) patients urgently calls for the development of new treatments. Chimeric antigen receptor T (CAR-T) cells are an attractive strategy, but preclinical and clinical studies in GBM have shown that heterogeneous expression of the antigens targeted so far causes tumor escape, highlighting the need for the identification of new targets. We explored if B7-H3 is a valuable target for CAR-T cells in GBM. METHODS: We compared mRNA expression of antigens in GBM using TCGA data, and validated B7-H3 expression by immunohistochemistry. We then tested the antitumor activity of B7-H3-redirected CAR-T cells against GBM cell lines and patient-derived GBM neurospheres in vitro and in xenograft murine models. FINDINGS: B7-H3 mRNA and protein are overexpressed in GBM relative to normal brain in all GBM subtypes. Of the 46 specimens analyzed by immunohistochemistry, 76% showed high B7-H3 expression, 22% had detectable, but low B7-H3 expression and 2% were negative, as was normal brain. All 20 patient-derived neurospheres showed ubiquitous B7-H3 expression. B7-H3-redirected CAR-T cells effectively targeted GBM cell lines and neurospheres in vitro and in vivo. No significant differences were found between CD28 and 4-1BB co-stimulation, although CD28-co-stimulated CAR-T cells released more inflammatory cytokines. INTERPRETATION: We demonstrated that B7-H3 is highly expressed in GBM specimens and neurospheres that contain putative cancer stem cells, and that B7-H3-redirected CAR-T cells can effectively control tumor growth. Therefore, B7-H3 represents a promising target in GBM. FUND: Alex's Lemonade Stand Foundation; Il Fondo di Gio Onlus; National Cancer Institute; Burroughs Wellcome Fund.


Asunto(s)
Antígenos B7/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/metabolismo , Animales , Antígenos de Neoplasias/inmunología , Antígenos B7/genética , Biomarcadores , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glioblastoma/inmunología , Glioblastoma/mortalidad , Glioblastoma/terapia , Humanos , Inmunofenotipificación , Inmunoterapia Adoptiva , Ratones , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Med Phys ; 38(11): 5969-79, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22047361

RESUMEN

PURPOSE: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd(2)O(2)S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator. The IBL produces a greater fluence of keV-range photons than the TBL, to which the detector response is more optimal, and the SPA is a more efficient scintillator than the LFB. METHODS: A prototype IBL + SPA system was installed on a Siemens Oncor linear accelerator equipped with the MVision(TM) image guided radiation therapy (IGRT) system. A SPA strip consisting of four neighboring tiles and measuring 40 cm by 10.96 cm in the crossplane and inplane directions, respectively, was installed in the flat panel imager. Head- and pelvis-sized phantom images were acquired at doses ranging from 3 to 60 cGy with three MVCBCT configurations: TBL + LFB, IBL + LFB, and IBL + SPA. Phantom image quality at each dose was quantified using the contrast-to-noise ratio (CNR) and modulation transfer function (MTF) metrics. Head and neck, thoracic, and pelvic (prostate) cancer patients were imaged with the three imaging system configurations at multiple doses ranging from 3 to 15 cGy. The systems were assessed qualitatively from the patient image data. RESULTS: For head and neck and pelvis-sized phantom images, imaging doses of 3 cGy or greater, and relative electron densities of 1.09 and 1.48, the CNR average improvement factors for imaging system change of TBL + LFB to IBL + LFB, IBL + LFB to IBL + SPA, and TBL + LFB to IBL + SPA were 1.63 (p < 10(- 8)), 1.64 (p < 10(- 13)), 2.66 (p < 10(- 9)), respectively. For all imaging doses, soft tissue contrast was more easily differentiated on IBL + SPA head and neck and pelvic images than TBL + LFB and IBL + LFB. IBL + SPA thoracic images were comparable to IBL + LFB images, but less noisy than TBL + LFB images at all imaging doses considered. The mean MTFs over all imaging doses were comparable, at within 3%, for all imaging system configurations for both the head- and pelvis-sized phantoms. CONCLUSIONS: Since CNR scales with the square root of imaging dose, changing from TBL + LFB to IBL + LFB and IBL + LFB to IBL + SPA reduces the imaging dose required to obtain a given CNR by factors of 0.38 and 0.37, respectively. MTFs were comparable between imaging system configurations. IBL + SPA patient image quality was always better than that of the TBL + LFB system and as good as or better than that of the IBL + LFB system, for a given dose.


Asunto(s)
Tomografía Computarizada de Haz Cónico/instrumentación , Intensificación de Imagen Radiográfica/instrumentación , Humanos , Masculino , Neoplasias/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...