Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Bodyw Mov Ther ; 30: 203-209, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35500972

RESUMEN

BACKGROUND: Participating in yoga may be ideal for college students to increase physical activity and improve mental health. PURPOSE: To investigate the feasibility and impact of an 8-week yoga intervention within a university setting on mental and physiologic heath. METHODS: This 8-week yoga intervention included twelve yoga-naïve adults, (23.8 ± 4.6 years; 71% female). Participants attended two 60-min yoga classes/week in addition to baseline, mid- and post-lab visits. RESULTS: 83% of participants attended ≥75% of yoga classes. Stress and depression symptoms decreased by 11% and 25%, respectively and erythrocyte sedimentation rate (ESR) reduced by 28%. Participants who did not meet physical activity recommendations observed greater improvements in stress, depression symptoms, ESR, and C-reactive protein compared to participants who met recommendations. CONCLUSION: The majority of participants attended ≥12 of 16 yoga classes. Exploratory analyses provide preliminary support for the impact of yoga on reducing stress, symptoms of depression, and ESR. Participants who were not meeting physical activity guidelines prior to starting the intervention received greater benefits.


Asunto(s)
Meditación , Yoga , Adulto , Ejercicio Físico , Femenino , Humanos , Masculino , Proyectos Piloto , Estudiantes , Yoga/psicología
2.
Ophthalmol Retina ; 6(4): 298-307, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34628066

RESUMEN

PURPOSE: To determine if treatment with a photobiomodulation (PBM) device results in greater improvement in central subfield thickness (CST) than placebo in eyes with center-involved diabetic macular edema (CI-DME) and good vision. DESIGN: Phase 2 randomized clinical trial. PARTICIPANTS: Participants had CI-DME and visual acuity (VA) 20/25 or better in the study eye and were recruited from 23 clinical sites in the United States. METHODS: One eye of each participant was randomly assigned 1:1 to a 670-nm light-emitting PBM eye patch or an identical device emitting broad-spectrum white light at low power. Treatment was applied for 90 seconds twice daily for 4 months. MAIN OUTCOME MEASURES: Change in CST on spectral-domain OCT at 4 months. RESULTS: From April 2019 to February 2020, 135 adults were randomly assigned to either PBM (n = 69) or placebo (n = 66); median age was 62 years, 37% were women, and 82% were White. The median device compliance was 92% with PBM and 95% with placebo. OCT CST increased from baseline to 4 months by a mean (SD) of 13 (53) µm in PBM eyes and 15 (57) µm in placebo eyes, with the mean difference (95% confidence interval [CI]) being -2 (-20 to 16) µm (P = 0.84). CI-DME, based on DRCR Retina Network sex- and machine-based thresholds, was present in 61 (90%) PBM eyes and 57 (86%) placebo eyes at 4 months (adjusted odds ratio [95% CI] = 1.30 (0.44-3.83); P = 0.63). VA decreased by a mean (SD) of -0.2 (5.5) letters and -0.6 (4.6) letters in the PBM and placebo groups, respectively (difference [95% CI] = 0.4 (-1.3 to 2.0) letters; P = 0.64). There were 8 adverse events possibly related to the PBM device and 2 adverse events possibly related to the placebo device. None were serious. CONCLUSIONS: PBM as given in this study, although safe and well-tolerated, was not found to be effective for the treatment of CI-DME in eyes with good vision.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Terapia por Luz de Baja Intensidad , Edema Macular , Adulto , Inhibidores de la Angiogénesis/uso terapéutico , Ensayos Clínicos Fase II como Asunto , Diabetes Mellitus/tratamiento farmacológico , Retinopatía Diabética/complicaciones , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/terapia , Femenino , Humanos , Edema Macular/tratamiento farmacológico , Edema Macular/terapia , Masculino , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Tomografía de Coherencia Óptica/métodos , Agudeza Visual
3.
PLoS One ; 16(12): e0260968, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34860856

RESUMEN

Diabetic retinopathy (DR), the most common complication of diabetes mellitus, is associated with oxidative stress, nuclear factor-κB (NFκB) activation, and excess production of vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1). Muller glial cells, spanning the entirety of the retina, are involved in DR inflammation. Mitigation of DR pathology currently occurs via invasive, frequently ineffective therapies which can cause adverse effects. The application of far-red to near-infrared (NIR) light (630-1000nm) reduces oxidative stress and inflammation in vitro and in vivo. Thus, we hypothesize that 670nm light treatment will diminish oxidative stress preventing downstream inflammatory mechanisms associated with DR initiated by Muller cells. In this study, we used an in vitro model system of rat Müller glial cells grown under normal (5 mM) or high (25 mM) glucose conditions and treated with a 670 nm light emitting diode array (LED) (4.5 J/cm2) or no light (sham) daily. We report that a single 670 nm light treatment diminished reactive oxygen species (ROS) production and preserved mitochondrial integrity in this in vitro model of early DR. Furthermore, treatment for 3 days in culture reduced NFκB activity to levels observed in normal glucose and prevented the subsequent increase in ICAM-1. The ability of 670nm light treatment to prevent early molecular changes in this in vitro high glucose model system suggests light treatment could mitigate early deleterious effects modulating inflammatory signaling and diminishing oxidative stress.


Asunto(s)
Metabolismo Energético , Células Ependimogliales/efectos de la radiación , Glucosa/toxicidad , Rayos Infrarrojos , Mitocondrias/efectos de la radiación , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Cultivadas , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Ratas , Edulcorantes/toxicidad
4.
Complement Ther Clin Pract ; 43: 101350, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33770740

RESUMEN

PURPOSE: To compare markers of health associated with chronic diseases between yoga and non-yoga participants. METHODS: 30 participants were categorized as either: 1) "Yoga" engaging in yoga ≥2 times/week for ≥6 months, or 2) "Non-yoga" not engaging in yoga. RESULTS: Perceived Stress Scale (PSS) and Beck Depression Inventory-II (BDI-II) scores were significantly different between the yoga and non-yoga groups (PSS: 8.0 vs. 17.5, respectively, p < 0.05; BDI-II: 1.0 vs. 5.5, respectively, p < 0.05). No significant differences were evident between groups for inflammatory markers nor Complex V of the mitochondrial electron transport chain. The erythrocyte sedimentation rate values differed between groups based on clinical cutoffs, with yoga participants categorized as normal (11.0 mm) and non-yoga above normal (21.5 mm). CONCLUSION: This research supports that yoga participation is associated with lower PSS and BDI-II scores but does not support a relationship with markers of inflammation. Further research is warranted.


Asunto(s)
Meditación , Yoga , Estudios Transversales , Depresión/terapia , Humanos , Inflamación
5.
Quant Imaging Med Surg ; 11(1): 107-118, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33392015

RESUMEN

BACKGROUND: Photobiomodulation (PBM) by far-red (FR) to near-infrared (NIR) light has been demonstrated to accelerate diabetic wound healing in preclinical and clinical studies. Mitochondrial dysfunction and oxidative stress play key roles in impaired diabetic wound healing, and the effect of PBM on the metabolic state of diabetic wounds remains to be elucidated. METHODS: In this study, a custom-designed in vivo fluorescence imaging technique was used to quantitatively assess the effect of FR-PBM on the mitochondrial bioenergetics of diabetic wounds. The intrinsic fluorescence of two mitochondrial co-enzymes, nicotinamide adenine dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD), was monitored to quantify the redox ratio (RR) (NADH/FAD) of wounds over time. RESULTS: Using an excisional model of wound healing, we demonstrated that 670 nm (FR) PBM improved mitochondrial bioenergetics and stimulated the rate of wound healing in diabetic db/db mice. Wound closure and the RR of diabetic wounds in response to 670 nm PBM (4.5 J/cm2, 60 mW/cm2 for 90 s per day, 5 days/week) were compared to the sham-treated group. At day 9 of post-wounding, we observed a 43% decrease in the wound area and a 75% increase in RR in FR-treated diabetic mice compared to sham-treated diabetic mice. CONCLUSIONS: We conclude that the increase in mitochondrial RR and the related decrease in oxidative stress may be an important factor in FR-PBM mediated acceleration of wound healing in diabetic mice.

6.
Sci Rep ; 10(1): 20382, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230161

RESUMEN

Photobiomodulation (PBM) by far-red (FR) to near-infrared (NIR) light has been demonstrated to restore the function of damaged mitochondria, increase the production of cytoprotective factors and prevent cell death. Our laboratory has shown that FR PBM improves functional and structural outcomes in animal models of retinal injury and retinal degenerative disease. The current study tested the hypothesis that a brief course of NIR (830 nm) PBM would preserve mitochondrial metabolic state and attenuate photoreceptor loss in a model of retinitis pigmentosa, the P23H transgenic rat. P23H rat pups were treated with 830 nm light (180 s; 25 mW/cm2; 4.5 J/cm2) using a light-emitting diode array (Quantum Devices, Barneveld, WI) from postnatal day (p) 10 to p25. Sham-treated rats were restrained, but not treated with 830 nm light. Retinal metabolic state, function and morphology were assessed at p30 by measurement of mitochondrial redox (NADH/FAD) state by 3D optical cryo-imaging, electroretinography (ERG), spectral-domain optical coherence tomography (SD-OCT), and histomorphometry. PBM preserved retinal metabolic state, retinal function, and retinal morphology in PBM-treated animals compared to the sham-treated group. PBM protected against the disruption of the oxidation state of the mitochondrial respiratory chain observed in sham-treated animals. Scotopic ERG responses over a range of flash intensities were significantly greater in PBM-treated rats compared to sham controls. SD-OCT studies and histological assessment showed that PBM preserved the structural integrity of the retina. These findings demonstrate for the first time a direct effect of NIR PBM on retinal mitochondrial redox status in a well-established model of retinal disease. They show that chronic proteotoxic stress disrupts retinal bioenergetics resulting in mitochondrial dysfunction, and retinal degeneration and that therapies normalizing mitochondrial metabolism have considerable potential for the treatment of retinal degenerative disease.


Asunto(s)
Metabolismo Energético/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Mitocondrias/efectos de la radiación , Degeneración Retiniana/radioterapia , Retinitis Pigmentosa/radioterapia , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Flavina-Adenina Dinucleótido/metabolismo , Rayos Infrarrojos , Mitocondrias/metabolismo , NAD/metabolismo , Oxidación-Reducción , Ratas , Ratas Transgénicas , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Células Fotorreceptoras Retinianas Bastones/efectos de la radiación , Retinitis Pigmentosa/diagnóstico por imagen , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Tomografía de Coherencia Óptica , Resultado del Tratamiento
7.
Biology (Basel) ; 8(2)2019 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-31083549

RESUMEN

Mitochondria are central in retinal cell function and survival and they perform functions that are critical to cell function. Retinal neurons have high energy requirements, since large amounts of ATP are needed to generate membrane potentials and power membrane pumps. Mitochondria over the course of aging undergo a number of changes. Aged mitochondria exhibit decreased rates of oxidative phosphorylation, increased reactive oxygen species (ROS) generation and increased numbers of mtDNA mutations. Mitochondria in the neural retina and the retinal pigment epithelium are particularly susceptible to oxidative damage with aging. Many age-related retinal diseases, including glaucoma and age-related macular degeneration, have been associated with mitochondrial dysfunction. Therefore, mitochondria are a promising therapeutic target for the treatment of retinal disease.

8.
IEEE J Transl Eng Health Med ; 7: 1800809, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32166047

RESUMEN

Background: Diabetes is known to cause delayed wound healing, and chronic non-healing lower extremity ulcers may end with lower limb amputations and mortalities. Given the increasing prevalence of diabetes mellitus worldwide, it is critical to focus on underlying mechanisms of these debilitating wounds to find novel therapeutic strategies and thereby improve patient outcome. Methods: This study aims to design a label-free optical fluorescence imager that captures metabolic indices (NADH and FAD autofluorescence) and monitors the in vivo wound healing progress noninvasively. Furthermore, 3D optical cryo-imaging of the mitochondrial redox state was utilized to assess the volumetric redox state of the wound tissue. Results: The results from our in vivo fluorescence imager and the 3D cryo-imager quantify the differences between the redox state of wounds on diabetic mice in comparison with the control mice. These metabolic changes are associated with mitochondrial dysfunction and higher oxidative stress in diabetic wounds. A significant correlation was observed between the redox state and the area of the wounds. Conclusion: The results suggest that our developed novel optical imaging system can successfully be used as an optical indicator of the complex wound healing process noninvasively.

9.
Invest Ophthalmol Vis Sci ; 59(11): 4362-4374, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30193308

RESUMEN

Purpose: Glutathione-S-transferase omega 1-1 (GSTO1-1) is a cytosolic glutathione transferase enzyme, involved in glutathionylation, toll-like receptor signaling, and calcium channel regulation. GSTO1-1 dysregulation has been implicated in oxidative stress and inflammation, and contributes to the pathogenesis of several diseases and neurological disorders; however, its role in retinal degenerations is unknown. The aim of this study was to investigate the role of GSTO1-1 in modulating oxidative stress and consequent inflammation in the normal and degenerating retina. Methods: The role of GSTO1-1 in retinal degenerations was explored by using Gsto1-/- mice in a model of retinal degeneration. The expression and localization of GSTO1-1 were investigated with immunohistochemistry and Western blot. Changes in the expression of inflammatory (Ccl2, Il-1ß, and C3) and oxidative stress (Nox1, Sod2, Gpx3, Hmox1, Nrf2, and Nqo1) genes were investigated via quantitative real-time polymerase chain reaction. Retinal function in Gsto1-/- mice was investigated by using electroretinography. Results: GSTO1-1 was localized to the inner segment of cone photoreceptors in the retina. Gsto1-/- photo-oxidative damage (PD) mice had decreased photoreceptor cell death as well as decreased expression of inflammatory (Ccl2, Il-1ß, and C3) markers and oxidative stress marker Nqo1. Further, retinal function in the Gsto1-/- PD mice was increased as compared to wild-type PD mice. Conclusions: These results indicate that GSTO1-1 is required for inflammatory-mediated photoreceptor death in retinal degenerations. Targeting GSTO1-1 may be a useful strategy to reduce oxidative stress and inflammation and ameliorate photoreceptor loss, slowing the progression of retinal degenerations.


Asunto(s)
Proteínas Portadoras/fisiología , Modelos Animales de Enfermedad , Glutatión Transferasa/fisiología , Células Fotorreceptoras/fisiología , Degeneración Retiniana/metabolismo , Animales , Biomarcadores/metabolismo , Western Blotting , Supervivencia Celular/fisiología , Complemento C3/genética , Citocinas/genética , Electrorretinografía , Femenino , Marcadores Genéticos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/metabolismo , Retina/fisiopatología , Degeneración Retiniana/fisiopatología
10.
MEDICC Rev ; 20(2): 27-31, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29773773

RESUMEN

From 1991 to 1993, an epidemic of optic and peripheral neuropathy-the largest of the century-broke out in Cuba, affecting more than 50,000 people. Initially the main clinical features were decreased visual acuity, central and cecocentral scotomas, impaired color vision and absence of the papillomacular bundle. Later, peripheral and mixed optic-peripheral forms began to appear. Due to the magnitude of the epidemic, the Cuban government requested help from the international community at the 46th World Health Assembly in 1993. PAHO and WHO immediately responded by sending a mission of international experts. Several hypotheses regarding the pathogenesis of Cuban epidemic neuropathy were put forward including: toxic, nutritional, genetic and infectious. The authors refer to extensive studies by researchers sponsored by the Cuban government and PAHO/WHO, joined by scientists from several other countries, including the USA. This paper describes their multidisciplinary work, particularly devoted to investigating the hypothesis of a primary toxic-nutritional cause of the epidemic. Clinical aspects, such as case definition and clinical description, were vital issues from the start. Cuban physicians who first examined patients received a clear impression of its toxic-nutritional origin, later confirmed by international experts. Research then focused on the mechanisms contributing to damage under the toxic-nutritional hypothesis. These included injuries to the mitochondrial oxidative phosphorylation pathway, nutritional deficiencies, excitotoxicity, formate toxicity and dysfunction of the blood-brain barrier. It was expected that the results of such international collaboration into this major health problem would also shed more light on mechanisms underlying other nutritional or tropical myeloneuropathies. KEYWORDS Optic neuritis, optic neuropathy, peripheral neuropathy, neurotoxicity syndromes, disease outbreaks, international cooperation, Cuba Erratum: Page 30, first complete paragraph, line 7, "Two models were developed independently by Cuban researchers" should read "Two models were developed independently by AAS and AGQ."


Asunto(s)
Procesos de Grupo , Enfermedades del Nervio Óptico/epidemiología , Enfermedades del Nervio Óptico/etiología , Enfermedades del Sistema Nervioso Periférico/epidemiología , Enfermedades del Sistema Nervioso Periférico/etiología , Cuba/epidemiología , Brotes de Enfermedades , Epidemias , Abastecimiento de Alimentos , Humanos , Cooperación Internacional
11.
Dose Response ; 16(4): 1559325818803428, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30627064

RESUMEN

This review brings together observations on the stress-induced regulation of resilience mechanisms in body tissues. It is argued that the stresses that induce tissue resilience in mammals arise from everyday sources: sunlight, food, lack of food, hypoxia and physical stresses. At low levels, these stresses induce an organised protective response in probably all tissues; and, at some higher level, cause tissue destruction. This pattern of response to stress is well known to toxicologists, who have termed it hormesis. The phenotypes of resilience are diverse and reports of stress-induced resilience are to be found in journals of neuroscience, sports medicine, cancer, healthy ageing, dementia, parkinsonism, ophthalmology and more. This diversity makes the proposing of a general concept of induced resilience a significant task, which this review attempts. We suggest that a system of stress-induced tissue resilience has evolved to enhance the survival of animals. By analogy with acquired immunity, we term this system 'acquired resilience'. Evidence is reviewed that acquired resilience, like acquired immunity, fades with age. This fading is, we suggest, a major component of ageing. Understanding of acquired resilience may, we argue, open pathways for the maintenance of good health in the later decades of human life.

12.
PLoS One ; 12(10): e0186375, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29036196

RESUMEN

Disinfectants and biocidal products have been widely used to combat Methicillin-resistant Staphylococcus aureus (MRSA) infections in homes and healthcare environments. Although disruption of cytoplasmic membrane integrity has been documented as the main bactericidal effect of biocides, little is known about the biochemical alterations induced by these chemical agents. In this study, we used Fourier transform infrared (FT-IR) spectroscopy and chemometric tools as an alternative non-destructive technique to determine the bactericidal effects of commonly used disinfectants against MRSA USA-300. FTIR spectroscopy permits a detailed characterization of bacterial reactivity, allowing an understanding of the fundamental mechanism of action involved in the interaction between bacteria and disinfectants. The disinfectants studied were ethanol 70% (N = 5), isopropanol (N = 5), sodium hypochlorite (N = 5), triclosan (N = 5) and triclocarban (N = 5). Results showed less than 5% colony forming units growth of MRSA treated with triclocarban and no growth in the other groups. Nearly 70,000 mid-infrared spectra from the five treatments and the two control (untreated; N = 4) groups of MRSA (bacteria grown in TSB and incubated at 37°C (Control I) / at ambient temperature (Control II), for 24h) were pre-processed and analyzed using principal component analysis followed by linear discriminant analysis (PCA-LDA). Clustering of strains of MRSA belonging to five treatments and the discrimination between each treatment and two control groups in MRSA (untreated) were investigated. PCA-LDA discriminatory frequencies suggested that ethanol-treated spectra are the most similar to isopropanol-treated spectra biochemically. Also reported here are the biochemical alterations in the structure of proteins, lipid membranes, and phosphate groups of MRSA produced by sodium hypochlorite, triclosan, and triclocarban treatments. These findings provide mechanistic information involved in the interaction between MRSA strains and hygiene products; thereby demonstrating the potential of spectroscopic analysis as an objective, robust, and label-free tool for evaluating the macromolecular changes involved in disinfectant-treated MRSA.


Asunto(s)
Antibacterianos/farmacología , Desinfectantes/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Alcoholes/farmacología
13.
J Photochem Photobiol B ; 167: 150-157, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28064075

RESUMEN

Blue light inactivates methicillin-resistant Staphylococcus aureus (MRSA), a Gram-positive antibiotic resistant bacterium that leads to fatal infections; however, the mechanism of bacterial death remains unclear. In this paper, to uncover the mechanism underlying the bactericidal effect of blue light, a combination of Fourier transform infrared (FTIR) spectroscopy and chemometric tools is employed to detect the photoreactivity of MRSA and its distinctive pathway toward apoptosis after treatment. The mechanism of action of UV light and vancomycin against MRSA is also investigated to support the findings. Principal component analysis followed by linear discriminant analysis (PCA- LDA) is employed to reveal clustering of five groups of MRSA samples, namely untreated (control I), untreated and incubated at ambient air (control II), irradiated with 470nm blue light, irradiated with 253.5 UV light, and vancomycin-treated MRSA. Loadings plot from PCA-LDA analysis reveals important functional groups in proteins (1683, 1656, 1596, 1542cm-1), lipids (1743, 1409cm-1), and nucleic acids region of the spectrum (1060, 1087cm-1) that are responsible for the classification of blue light irradiated spectra and control spectra. Cluster vector plots and scores plot reveals that UV light-irradiated spectra are the most biochemically similar to blue light- irradiated spectra; however, some wavenumbers experience a shift. The shifts between blue light and UV light irradiated loadings plot at νasym PO2- band (from 1228 to 1238cm-1), DNA backbone (from 970 to 966cm-1) and base pairing vibration of DNA (from 1717 to 1712cm-1) suggest distinctive changes in DNA conformation in response to irradiation. Our findings indicate that irradiation of MRSA with 470nm light induces A-DNA cleavage and that B-DNA is more resistant to damage by blue light. Blue light and UV light treatment of MRSA are complementary and distinct from the known antimicrobial effect of vancomycin. Moreover, it is known that UV-induced cleavage of DNA predominantly targets B-DNA, which is in agreement with the FTIR findings. Overall the results suggest that the combination of light and vancomycin could be a more robust approach in treating MRSA infections.


Asunto(s)
Luz , Staphylococcus aureus Resistente a Meticilina/efectos de la radiación , Microscopía/métodos , Antibacterianos/farmacología , Recuento de Colonia Microbiana , ADN Bacteriano/efectos de la radiación , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Vancomicina/farmacología
14.
Exp Eye Res ; 150: 122-34, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26521765

RESUMEN

PURPOSE: To characterize the relationship between fundus autofluorescence (FAF), Optical Coherence Tomography (OCT) and immunohistochemistry (IHC) over the course of chronic retinal degeneration in the P23H rat. METHODS: Homozygous albino P23H rats, Sprague-Dawley (SD) rats as controls and pigmented Long Evans (LE) rats were used. A Spectralis HRA OCT system was used for scanning laser ophthalmoscopy (SLO) imaging OCT and angiography. To determine FAF, fluorescence was excited using diode laser at 488 nm. A fast retina map OCT was performed using the optic nerve as a landmark. IHC was performed to correlate with the findings of OCT and FAF changes. RESULTS: During the course of retinal degeneration, the FAF pattern evolved from some spotting at 2 months old to a mosaic of hyperfluorescent dots in rats 6 months and older. Retinal thicknesses progressively diminished over the course of the disease. At later stages of degeneration, OCT documented changes in the retinal layers, however, IHC better identified the cell loss and remodeling changes. Angiography revealed attenuation of the retinal vascular plexus with time. CONCLUSION: We provide for the first time a detailed long-term analysis of the course of retinal degeneration in P23H rats using a combination of SLO and OCT imaging, angiography, FAF and IHC. Although, the application of noninvasive methods enables longitudinal studies and will decrease the number of animals needed for a study, IHC is still an essential tool to identify retinal changes at the cellular level.


Asunto(s)
Angiografía con Fluoresceína/métodos , Hipocalcina/metabolismo , Inmunohistoquímica/métodos , Degeneración Retiniana , Epitelio Pigmentado de la Retina/patología , Tomografía de Coherencia Óptica/métodos , Agudeza Visual , Animales , Modelos Animales de Enfermedad , Fondo de Ojo , Humanos , Ratas , Degeneración Retiniana/diagnóstico , Degeneración Retiniana/metabolismo , Degeneración Retiniana/fisiopatología , Epitelio Pigmentado de la Retina/metabolismo , Factores de Tiempo
15.
Adv Exp Med Biol ; 854: 437-41, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26427443

RESUMEN

Evidence is growing that exposure of tissue to low energy photon irradiation in the far-red (FR) to near-infrared (NIR) range of the spectrum, collectively termed "photobiomodulation" (PBM) can restore the function of damaged mitochondria, upregulate the production of cytoprotective factors and prevent apoptotic cell death. PBM has been applied clinically in the treatment of soft tissue injuries and acceleration of wound healing for more than 40 years. Recent studies have demonstrated that FR/NIR photons penetrate diseased tissues including the retina. The therapeutic effects of PBM have been hypothesized to result from intracellular signaling pathways triggered when FR/NIR photons are absorbed by the mitochondrial photoacceptor molecule, cytochrome c oxidase, culminating in improved mitochondrial energy metabolism, increased cytoprotective factor production and cell survival. Investigations in rodent models of methanol-induced ocular toxicity, light damage, retinitis pigmentosa and age-related macular degeneration have demonstrated the PBM attenuates photoreceptor cell death, protects retinal function and exerts anti-inflammatory actions.


Asunto(s)
Rayos Infrarrojos , Fototerapia/métodos , Retina/efectos de la radiación , Enfermedades de la Retina/terapia , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Electrorretinografía , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/efectos de la radiación , Humanos , Metanol/toxicidad , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Fotones , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/efectos de la radiación , Ratas , Retina/efectos de los fármacos , Retina/patología , Enfermedades de la Retina/inducido químicamente , Enfermedades de la Retina/fisiopatología
16.
PLoS One ; 8(6): e67358, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840675

RESUMEN

BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is the most commonly studied animal model of multiple sclerosis (MS), a chronic autoimmune demyelinating disorder of the central nervous system. Immunomodulatory and immunosuppressive therapies currently approved for the treatment of MS slow disease progression, but do not prevent it. A growing body of evidence suggests additional mechanisms contribute to disease progression. We previously demonstrated the amelioration of myelin oligodendrocyte glycoprotein (MOG)-induced EAE in C57BL/6 mice by 670 nm light-induced photobiomodulation, mediated in part by immune modulation. Numerous other studies demonstrate that near-infrared/far red light is therapeutically active through modulation of nitrosoxidative stress. As nitric oxide has been reported to play diverse roles in EAE/MS, and recent studies suggest that axonal loss and progression of disability in MS is mediated by nitrosoxidative stress, we investigated the effect of 670 nm light treatment on nitrosative stress in MOG-induced EAE. METHODOLOGY: Cell culture experiments demonstrated that 670 nm light-mediated photobiomodulation attenuated antigen-specific nitric oxide production by heterogenous lymphocyte populations isolated from MOG immunized mice. Experiments in the EAE model demonstrated down-regulation of inducible nitric oxide synthase (iNOS) gene expression in the spinal cords of mice with EAE over the course of disease, compared to sham treated animals. Animals receiving 670 nm light treatment also exhibited up-regulation of the Bcl-2 anti-apoptosis gene, an increased Bcl-2:Bax ratio, and reduced apoptosis within the spinal cord of animals over the course of disease. 670 nm light therapy failed to ameliorate MOG-induced EAE in mice deficient in iNOS, confirming a role for remediation of nitrosative stress in the amelioration of MOG-induced EAE by 670 nm mediated photobiomodulation. CONCLUSIONS: These data indicate that 670 nm light therapy protects against nitrosative stress and apoptosis within the central nervous system, contributing to the clinical effect of 670 nm light therapy previously noted in the EAE model.


Asunto(s)
Encefalomielitis Autoinmune Experimental/terapia , Rayos Infrarrojos/uso terapéutico , Estrés Fisiológico/efectos de la radiación , Animales , Apoptosis/efectos de la radiación , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito/inmunología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fragmentos de Péptidos/inmunología , Fototerapia , Médula Espinal/enzimología , Médula Espinal/patología , Médula Espinal/efectos de la radiación
17.
Invest Ophthalmol Vis Sci ; 54(5): 3681-90, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23557732

RESUMEN

PURPOSE: Treatment with light in the far-red to near-infrared region of the spectrum (photobiomodulation [PBM]) has beneficial effects in tissue injury. We investigated the therapeutic efficacy of 670-nm PBM in rodent and cultured cell models of diabetic retinopathy. METHODS: Studies were conducted in streptozotocin-induced diabetic rats and in cultured retinal cells. Diabetes-induced retinal abnormalities were assessed functionally, biochemically, and histologically in vivo and in vitro. RESULTS: We observed beneficial effects of PBM on the neural and vascular elements of retina. Daily 670-nm PBM treatment (6 J/cm(2)) resulted in significant inhibition in the diabetes-induced death of retinal ganglion cells, as well as a 50% improvement of the ERG amplitude (photopic b wave responses) (both P < 0.01). To explore the mechanism for these beneficial effects, we examined physiologic and molecular changes related to cell survival, oxidative stress, and inflammation. PBM did not alter cytochrome oxidase activity in the retina or in cultured retinal cells. PBM inhibited diabetes-induced superoxide production and preserved MnSOD expression in vivo. Diabetes significantly increased both leukostasis and expression of ICAM-1, and PBM essentially prevented both of these abnormalities. In cultured retinal cells, 30-mM glucose exposure increased superoxide production, inflammatory biomarker expression, and cell death. PBM inhibited all of these abnormalities. CONCLUSIONS: PBM ameliorated lesions of diabetic retinopathy in vivo and reduced oxidative stress and cell death in vitro. PBM has been documented to have minimal risk. PBM is noninvasive, inexpensive, and easy to administer. We conclude that PBM is a simple adjunct therapy to attenuate the development of diabetic retinopathy.


Asunto(s)
Diabetes Mellitus Experimental/patología , Retinopatía Diabética/patología , Retinopatía Diabética/radioterapia , Fototerapia/métodos , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/efectos de la radiación , Animales , Línea Celular , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Electrorretinografía , Humanos , Etiquetado Corte-Fin in Situ , Técnicas In Vitro , Leucostasis/patología , Leucostasis/radioterapia , Luz , Masculino , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Óxido Nítrico/metabolismo , Estrés Oxidativo/fisiología , Estrés Oxidativo/efectos de la radiación , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Células Fotorreceptoras de Vertebrados/efectos de la radiación , Fototerapia/instrumentación , Ratas , Ratas Endogámicas Lew , Células Ganglionares de la Retina/metabolismo , Transducción de Señal/fisiología , Transducción de Señal/efectos de la radiación , Superóxidos/metabolismo
18.
J Biomed Opt ; 18(1): 16004, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23291617

RESUMEN

Oxidative stress (OS) and mitochondrial dysfunction contribute to photoreceptor cell loss in retinal degenerative disorders. The metabolic state of the retina in a rodent model of retinitis pigmentosa (RP) was investigated using a cryo-fluorescence imaging technique. The mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent and can be monitored without exogenous labels using optical techniques. The cryo-fluorescence redox imaging technique provides a quantitative assessment of the metabolism. More specifically, the ratio of the fluorescence intensity of these fluorophores (NADH/FAD), the NADH redox ratio (RR), is a marker of the metabolic state of the tissue. The NADH RR and retinal function were examined in an established rodent model of RP, the P23H rat compared to that of nondystrophic Sprague-Dawley (SD) rats. The NADH RR mean values were 1.11 ± 0.03 in the SD normal and 0.841 ± 0.01 in the P23H retina, indicating increased OS in the P23H retina. Electroretinographic data revealed a significant reduction in photoreceptor function in P23H animals compared to SD nozrmal rats. Thus, cryo-fluorescence redox imaging was used as a quantitative marker of OS in eyes from transgenic rats and demonstrated that alterations in the oxidative state of eyes occur during the early stages of RP.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Mitocondrias/metabolismo , Imagen Óptica/métodos , Retinitis Pigmentosa/metabolismo , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Mitocondrias/patología , NAD/metabolismo , Oxidación-Reducción , Estrés Oxidativo/fisiología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Retinitis Pigmentosa/patología
19.
BMC Microbiol ; 12: 176, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22894815

RESUMEN

BACKGROUND: Chlamydia trachomatis is an intracellular bacterium that resides in the conjunctival and reproductive tract mucosae and is responsible for an array of acute and chronic diseases. A percentage of these infections persist even after use of antibiotics, suggesting the need for alternative treatments. Previous studies have demonstrated anti-bacterial effects using different wavelengths of visible light at varying energy densities, though only against extracellular bacteria. We investigated the effects of visible light (405 and 670 nm) irradiation via light emitting diode (LEDs) on chlamydial growth in endocervical epithelial cells, HeLa, during active and penicillin-induced persistent infections. Furthermore, we analyzed the effect of this photo treatment on the ensuing secretion of IL-6 and CCL2, two pro-inflammatory cytokines that have previously been identified as immunopathologic components associated with trichiasis in vivo. RESULTS: C. trachomatis-infected HeLa cells were treated with 405 or 670 nm irradiation at varying energy densities (0 - 20 J/cm2). Bacterial growth was assessed by quantitative real-time PCR analyzing the 16S: GAPDH ratio, while cell-free supernatants were examined for IL-6 and monocyte chemoattractant protein-1 (CCL2) production. Our results demonstrated a significant dose-dependent inhibitory effect on chlamydial growth during both active and persistent infections following 405 nm irradiation. Diminished bacterial load corresponded to lower IL-6 concentrations, but was not related to CCL2 levels. In vitro modeling of a persistent C. trachomatis infection induced by penicillin demonstrated significantly elevated IL-6 levels compared to C. trachomatis infection alone, though 405 nm irradiation had a minimal effect on this production. CONCLUSION: Together these results identify novel inhibitory effects of 405 nm violet light on the bacterial growth of intracellular bacterium C. trachomatis in vitro, which also coincides with diminished levels of the pro-inflammatory cytokine IL-6.


Asunto(s)
Chlamydia trachomatis/crecimiento & desarrollo , Chlamydia trachomatis/efectos de la radiación , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Luz , Quimiocina CCL2/metabolismo , Células HeLa , Humanos , Interleucina-6/metabolismo
20.
PLoS One ; 7(1): e30655, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22292010

RESUMEN

BACKGROUND: The approved immunomodulatory agents for the treatment of multiple sclerosis (MS) are only partially effective. It is thought that the combination of immunomodulatory and neuroprotective strategies is necessary to prevent or reverse disease progression. Irradiation with far red/near infrared light, termed photobiomodulation, is a therapeutic approach for inflammatory and neurodegenerative diseases. Data suggests that near-infrared light functions through neuroprotective and anti-inflammatory mechanisms. We sought to investigate the clinical effect of photobiomodulation in the Experimental Autoimmune Encephalomyelitis (EAE) model of multiple sclerosis. METHODOLOGY/PRINCIPAL FINDINGS: The clinical effect of photobiomodulation induced by 670 nm light was investigated in the C57BL/6 mouse model of EAE. Disease was induced with myelin oligodendrocyte glycoprotein (MOG) according to standard laboratory protocol. Mice received 670 nm light or no light treatment (sham) administered as suppression and treatment protocols. 670 nm light reduced disease severity with both protocols compared to sham treated mice. Disease amelioration was associated with down-regulation of proinflammatory cytokines (interferon-γ, tumor necrosis factor-α) and up-regulation of anti-inflammatory cytokines (IL-4, IL-10) in vitro and in vivo. CONCLUSION/SIGNIFICANCE: These studies document the therapeutic potential of photobiomodulation with 670 nm light in the EAE model, in part through modulation of the immune response.


Asunto(s)
Encefalomielitis Autoinmune Experimental/terapia , Luz , Fototerapia/métodos , Animales , Citocinas/sangre , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/sangre , Encefalomielitis Autoinmune Experimental/patología , Femenino , Mediadores de Inflamación/sangre , Rayos Infrarrojos/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/patología , Esclerosis Múltiple/terapia , Fotobiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...