Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Eur J Pharm Sci ; 197: 106776, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663759

RESUMEN

The emergence of multidrug-resistant (MDR) strains causes severe problems in the treatment of microbial infections owing to limited treatment options. Antimicrobial peptides (AMPs) are drawing considerable attention as promising antibiotic alternative candidates to combat MDR bacterial and fungal infections. Herein, we present a series of small amphiphilic membrane-active cyclic peptides composed, in part, of various nongenetically encoded hydrophilic and hydrophobic amino acids. Notably, lead cyclic peptides 3b and 4b showed broad-spectrum activity against drug-resistant Gram-positive (MIC = 1.5-6.2 µg/mL) and Gram-negative (MIC = 12.5-25 µg/mL) bacteria, and fungi (MIC = 3.1-12.5 µg/mL). Furthermore, lead peptides displayed substantial antibiofilm action comparable to standard antibiotics. Hemolysis (HC50 = 230 µg/mL) and cytotoxicity (>70 % cell viability against four different mammalian cells at 100 µg/mL) assay results demonstrated the selective lethal action of 3b against microbes over mammalian cells. A calcein dye leakage experiment substantiated the membranolytic effect of 3b and 4b, which was further confirmed by scanning electron microscopy. The behavior of 3b and 4b in aqueous solution and interaction with phospholipid bilayers were assessed by employing nuclear magnetic resonance (NMR) spectroscopy in conjunction with molecular dynamics (MD) simulations, providing a solid structural basis for understanding their membranolytic action. Moreover, 3b exhibited stability in human blood plasma (t1/2 = 13 h) and demonstrated no signs of resistance development against antibiotic-resistant S. aureus and E. coli. These findings underscore the potential of these newly designed amphiphilic cyclic peptides as promising anti-infective agents, especially against Gram-positive bacteria.


Asunto(s)
Biopelículas , Farmacorresistencia Bacteriana Múltiple , Hemólisis , Pruebas de Sensibilidad Microbiana , Humanos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Biopelículas/efectos de los fármacos , Hemólisis/efectos de los fármacos , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química , Antibacterianos/farmacología , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Animales , Hongos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química , Bacterias Gramnegativas/efectos de los fármacos
2.
Molecules ; 28(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38138539

RESUMEN

In our ongoing quest to design effective antimicrobial peptides (AMPs), this study aimed to elucidate the mechanisms governing cyclic amphiphilic AMPs and their interactions with membranes. The objective was to discern the nature of these interactions and understand how peptide sequence and structure influence antimicrobial activity. We introduced modifications into the established cyclic AMP peptide, [W4R4], incorporating an extra aromatic hydrophobic residue (W), a positively charged residue (R), or the unique 2,5-diketopiperazine (DKP). This study systematically explored the structure-activity relationships (SARs) of a series of cyclic peptides derived from the [W4R4] scaffold, including the first synthesis and evaluation of [W4R4(DKP)]. Structural, dynamic, hydrophobic, and membrane-binding properties of four cyclic peptides ([W4R4], [W5R4], [W4R5], [W4R4(DKP)]) were explored using molecular dynamics simulations within a DOPC/DOPG lipid bilayer that mimics the bacterial membrane. The results revealed distinct SARs linking antimicrobial activity to parameters such as conformational plasticity, immersion depth in the bilayer, and population of the membrane binding mode. Notably, [W4R5] exhibited an optimal "activity/binding to the bacterial membrane" pattern. This multidisciplinary approach efficiently decoded finely regulated SAR profiles, laying a foundation for the rational design of novel antimicrobial peptides.


Asunto(s)
Antiinfecciosos , Péptidos Cíclicos , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química , Péptidos Catiónicos Antimicrobianos/química , Antiinfecciosos/farmacología , Membrana Dobles de Lípidos/química , Secuencia de Aminoácidos , Bacterias/metabolismo
3.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38003610

RESUMEN

Membrane-spanning portions of proteins' polypeptide chains are commonly known as their transmembrane domains (TMDs). The structural organisation and dynamic behaviour of TMDs from proteins of various families, be that receptors, ion channels, enzymes etc., have been under scrutiny on the part of the scientific community for the last few decades. The reason for such attention is that, apart from their obvious role as an "anchor" in ensuring the correct orientation of the protein's extra-membrane domains (in most cases functionally important), TMDs often actively and directly contribute to the operation of "the protein machine". They are capable of transmitting signals across the membrane, interacting with adjacent TMDs and membrane-proximal domains, as well as with various ligands, etc. Structural data on TMD arrangement are still fragmentary at best due to their complex molecular organisation as, most commonly, dynamic oligomers, as well as due to the challenges related to experimental studies thereof. Inter alia, this is especially true for viral fusion proteins, which have been the focus of numerous studies for quite some time, but have provoked unprecedented interest in view of the SARS-CoV-2 pandemic. However, despite numerous structure-centred studies of the spike (S) protein effectuating target cell entry in coronaviruses, structural data on the TMD as part of the entire spike protein are still incomplete, whereas this segment is known to be crucial to the spike's fusogenic activity. Therefore, in attempting to bring together currently available data on the structure and dynamics of spike proteins' TMDs, the present review aims to tackle a highly pertinent task and contribute to a better understanding of the molecular mechanisms underlying virus-mediated fusion, also offering a rationale for the design of novel efficacious methods for the treatment of infectious diseases caused by SARS-CoV-2 and related viruses.


Asunto(s)
Fusión de Membrana , Proteínas Virales de Fusión , Humanos , Fusión de Membrana/fisiología , Dominios Proteicos , Proteínas Virales de Fusión/metabolismo , Péptidos , SARS-CoV-2/metabolismo
4.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38003673

RESUMEN

Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity. Here, we report modification of the lipophilic part of the molecule, perylene, by the introduction of 4-, 8-, and 12-carbon alkyls into position 9(10) of the perylene residue. Using Friedel-Crafts acylation and Wolff-Kishner reduction, three 3-acetyl-9(10)-alkylperylenes were synthesized from perylene and used to prepare 9 nucleoside and 12 non-nucleoside amphipathic derivatives. These compounds were characterized as fluorophores and singlet oxygen generators, as well as tested as antivirals against herpes virus-1 (HSV-1) and vesicular stomatitis virus (VSV), both known for causing superficial skin/mucosa lesions and thus serving as suitable candidates for photodynamic therapy. The results suggest that derivatives with a short alkyl chain (butyl) have strong antiviral activity, whereas the introduction of longer alkyl substituents (n = 8 and 12) to the perylenyethynyl scaffold results in a dramatic reduction of antiviral activity. This phenomenon is likely attributable to the increased lipophilicity of the compounds and their ability to form insoluble aggregates. Moreover, molecular dynamic studies revealed that alkylated perylene derivatives are predominately located closer to the middle of the bilayer compared to non-alkylated derivatives. The predicted probability of superficial positioning correlated with antiviral activity, suggesting that singlet oxygen generation is achieved in the subsurface layer of the membrane, where the perylene group is more accessible to dissolved oxygen.


Asunto(s)
Herpesvirus Humano 1 , Perileno , Fotoquimioterapia , Perileno/farmacología , Oxígeno Singlete , Antivirales/farmacología , Antivirales/química , Fármacos Fotosensibilizantes/farmacología
5.
Nat Commun ; 14(1): 4630, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532722

RESUMEN

The calcium-selective oncochannel TRPV6 is an important driver of cell proliferation in human cancers. Despite increasing interest of pharmacological research in developing synthetic inhibitors of TRPV6, natural compounds acting at this channel have been largely neglected. On the other hand, pharmacokinetics of natural small-molecule antagonists optimized by nature throughout evolution endows these compounds with a medicinal potential to serve as potent and safe next-generation anti-cancer drugs. Here we report the structure of human TRPV6 in complex with tetrahydrocannabivarin (THCV), a natural cannabinoid inhibitor extracted from Cannabis sativa. We use cryo-electron microscopy combined with electrophysiology, calcium imaging, mutagenesis, and molecular dynamics simulations to identify THCV binding sites in the portals that connect the membrane environment surrounding the protein to the central cavity of the channel pore and to characterize the allosteric mechanism of TRPV6 inhibition. We also propose the molecular pathway taken by THCV to reach its binding site. Our study provides a foundation for the development of new TRPV6-targeting drugs.


Asunto(s)
Calcio , Cannabinoides , Humanos , Calcio/metabolismo , Microscopía por Crioelectrón , Cannabinoides/farmacología , Sitios de Unión , Canales Catiónicos TRPV/metabolismo , Canales de Calcio/metabolismo
6.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569743

RESUMEN

Roughly 1% of the global population is susceptible to celiac disease (CD)-inheritable autoimmune inflammation of the small intestine caused by intolerance to gliadin proteins present in wheat, rye, and barley grains, and called gluten in wheat. Classical treatment is a life-long gluten-free diet, which is constraining and costly. An alternative approach is based upon the development and oral reception of effective peptidases that degrade in the stomach immunogenic proline- and glutamine-rich gliadin peptides, which are the cause of the severe reaction in the intestine. In previous research, we have established that the major digestive peptidase of an insect Tribolium castaneum-cathepsin L-hydrolyzes immunogenic prolamins after Gln residues but is unstable in the extremely acidic environment (pH 2-4) of the human stomach and cannot be used as a digestive aid. In this work, using molecular dynamics simulations, we discover the probable cause of the pH instability of cathepsin L-loss of the catalytically competent rotameric state of one of the active site residues, His 275. To "fix" the correct orientation of this residue, we designed a V277A mutant variant, which extends the range of stability of the peptidase in the acidic environment while retaining most of its activity. We suggest this protein as a lead glutenase for the development of oral medical preparation that fights CD and gluten intolerance in susceptible people.

7.
Elife ; 122023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37470705

RESUMEN

Non-membrane-bound biomolecular condensates have been proposed to represent an important mode of subcellular organization in diverse biological settings. However, the fundamental principles governing the spatial organization and dynamics of condensates at the atomistic level remain unclear. The Saccharomyces cerevisiae Lge1 protein is required for histone H2B ubiquitination and its N-terminal intrinsically disordered fragment (Lge11-80) undergoes robust phase separation. This study connects single- and multi-chain all-atom molecular dynamics simulations of Lge11-80 with the in vitro behavior of Lge11-80 condensates. Analysis of modeled protein-protein interactions elucidates the key determinants of Lge11-80 condensate formation and links configurational entropy, valency, and compactness of proteins inside the condensates. A newly derived analytical formalism, related to colloid fractal cluster formation, describes condensate architecture across length scales as a function of protein valency and compactness. In particular, the formalism provides an atomistically resolved model of Lge11-80 condensates on the scale of hundreds of nanometers starting from individual protein conformers captured in simulations. The simulation-derived fractal dimensions of condensates of Lge11-80 and its mutants agree with their in vitro morphologies. The presented framework enables a multiscale description of biomolecular condensates and embeds their study in a wider context of colloid self-organization.


Asunto(s)
Condensados Biomoleculares , Proteínas Fúngicas , Entropía , Fractales , Simulación de Dinámica Molecular
8.
Nat Commun ; 14(1): 2659, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160865

RESUMEN

Calcium-selective oncochannel TRPV6 is the major driver of cell proliferation in human cancers. While significant effort has been invested in the development of synthetic TRPV6 inhibitors, natural channel blockers have been largely neglected. Here we report the structure of human TRPV6 in complex with the plant-derived phytoestrogen genistein, extracted from Styphnolobium japonicum, that was shown to inhibit cell invasion and metastasis in cancer clinical trials. Despite the pharmacological value, the molecular mechanism of TRPV6 inhibition by genistein has remained enigmatic. We use cryo-EM combined with electrophysiology, calcium imaging, mutagenesis, and molecular dynamics simulations to show that genistein binds in the intracellular half of the TRPV6 pore and acts as an ion channel blocker and gating modifier. Genistein binding to the open channel causes pore closure and a two-fold symmetrical conformational rearrangement in the S4-S5 and S6-TRP helix regions. The unprecedented mechanism of TRPV6 inhibition by genistein uncovers new possibilities in structure-based drug design.


Asunto(s)
Genisteína , Fitoestrógenos , Humanos , Genisteína/farmacología , Fitoestrógenos/farmacología , Calcio , Electrofisiología Cardíaca , Proliferación Celular , Canales de Calcio , Canales Catiónicos TRPV
9.
Comput Struct Biotechnol J ; 21: 2837-2844, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37216019

RESUMEN

Constitutive activation of receptor tyrosine kinases (RTKs) via different mutations has a strong impact on the development of severe human disorders, including cancer. Here we propose a putative activation scenario of RTKs, whereby transmembrane (TM) mutations can also promote higher-order oligomerization of the receptors that leads to the subsequent ligand-free activation. We illustrate this scenario using a computational modelling framework comprising sequence-based structure prediction and all-atom 1 µs molecular dynamics (MD) simulations in a lipid membrane for a previously characterised oncogenic TM mutation V536E in platelet-derived growth factor receptor alpha (PDGFRA). We show that in the course of MD simulations the mutant TM tetramer retains stable and compact configuration strengthened by tight protein-protein interactions, while the wild type TM tetramer demonstrates looser packing and a tendency to dissociate. Moreover, the mutation affects the characteristic motions of mutated TM helical segments by introducing additional non-covalent crosslinks in the middle of the TM tetramer, which operate as mechanical hinges. This leads to dynamic decoupling of the C-termini from the rigidified N-terminal parts and facilitates more pronounced possible displacement between the C-termini of the mutant TM helical regions that can provide more freedom for mutual rearrangement of the kinase domains located downstream. Our results for the V536E mutation in the context of PDGFRA TM tetramer allow for the possibility that the effect of oncogenic TM mutations can go beyond alternating the structure and dynamics of TM dimeric states and might also promote the formation of higher-order oligomers directly contributing to ligand-independent signalling effectuated by PDGFRA and other RTKs.

10.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835322

RESUMEN

Human InsR, IGF1R, and IRR receptor tyrosine kinases (RTK) of the insulin receptor subfamily play an important role in signaling pathways for a wide range of physiological processes and are directly associated with many pathologies, including neurodegenerative diseases. The disulfide-linked dimeric structure of these receptors is unique among RTKs. Sharing high sequence and structure homology, the receptors differ dramatically in their localization, expression, and functions. In this work, using high-resolution NMR spectroscopy supported by atomistic computer modeling, conformational variability of the transmembrane domains and their interactions with surrounding lipids were found to differ significantly between representatives of the subfamily. Therefore, we suggest that the heterogeneous and highly dynamic membrane environment should be taken into account in the observed diversity of the structural/dynamic organization and mechanisms of activation of InsR, IGF1R, and IRR receptors. This membrane-mediated control of receptor signaling offers an attractive prospect for the development of new targeted therapies for diseases associated with dysfunction of insulin subfamily receptors.


Asunto(s)
Desarrollo de Medicamentos , Receptor de Insulina , Humanos , Dominios Proteicos , Receptor de Insulina/química , Receptor de Insulina/fisiología , Transducción de Señal
11.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674846

RESUMEN

To date, a number of lantibiotics have been shown to use lipid II-a highly conserved peptidoglycan precursor in the cytoplasmic membrane of bacteria-as their molecular target. The α-component (Lchα) of the two-component lantibiotic lichenicidin, previously isolated from the Bacillus licheniformis VK21 strain, seems to contain two putative lipid II binding sites in its N-terminal and C-terminal domains. Using NMR spectroscopy in DPC micelles, we obtained convincing evidence that the C-terminal mersacidin-like site is involved in the interaction with lipid II. These data were confirmed by the MD simulations. The contact area of lipid II includes pyrophosphate and disaccharide residues along with the first isoprene units of bactoprenol. MD also showed the potential for the formation of a stable N-terminal nisin-like complex; however, the conditions necessary for its implementation in vitro remain unknown. Overall, our results clarify the picture of two component lantibiotics mechanism of antimicrobial action.


Asunto(s)
Antibacterianos , Bacteriocinas , Antibacterianos/química , Peptidoglicano/metabolismo , Bacteriocinas/química , Uridina Difosfato Ácido N-Acetilmurámico/química , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo
12.
J Med Chem ; 66(1): 855-874, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36574364

RESUMEN

A series of small (7-12 mer) amphipathic cationic peptides were designed and synthesized to create short helical peptides with broad-range bactericidal activity and selectivity toward the bacterial cells. The analysis identified a lead 12-mer peptide 8b with broad-spectrum activity against Gram-positive (MIC = 3.1-6.2 µg/mL) and Gram-negative (MIC = 6.2-12.5 µg/mL) bacteria and selectivity toward prokaryotic versus eukaryotic cells (HC50 = 280 µg/mL, >75% cell viability at 150 µg/mL). The rapid membranolytic action of 8b was demonstrated by a calcein dye leakage assay and confirmed using scanning electron microscopy. According to circular dichroism and NMR spectroscopy, the peptides have an irregular spatial structure in water. A lipid bilayer induced an amphipathic helix only in 12-mer peptides, including 8b. Molecular dynamics simulations provided detailed information about the interaction of 8b and its closest analogues with bacterial and mammalian membranes and revealed the roles of particular amino acids in the activity and selectivity of peptides.


Asunto(s)
Antibacterianos , Péptidos Catiónicos Antimicrobianos , Animales , Péptidos Catiónicos Antimicrobianos/química , Antibacterianos/química , Membrana Dobles de Lípidos/metabolismo , Conformación Proteica en Hélice alfa , Bacterias/metabolismo , Dicroismo Circular , Pruebas de Sensibilidad Microbiana , Mamíferos/metabolismo
13.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499114

RESUMEN

S-acylation is a post-translational linkage of long chain fatty acids to cysteines, playing a key role in normal physiology and disease. In human cells, the reaction is catalyzed by a family of 23 membrane DHHC-acyltransferases (carrying an Asp-His-His-Cys catalytic motif) in two stages: (1) acyl-CoA-mediated autoacylation of the enzyme; and (2) further transfer of the acyl chain to a protein substrate. Despite the availability of a 3D-structure of human acyltransferase (hDHHC20), the molecular aspects of lipid selectivity of DHHC-acyltransferases remain unclear. In this paper, using molecular dynamics (MD) simulations, we studied membrane-bound hDHHC20 right before the acylation by C12-, C14-, C16-, C18-, and C20-CoA substrates. We found that: (1) regardless of the chain length, its terminal methyl group always reaches the "ceiling" of the enzyme's cavity; (2) only for C16, an optimal "reactivity" (assessed by a simple geometric criterion) permits the autoacylation; (3) in MD, some key interactions between an acyl-CoA and a protein differ from those in the reference crystal structure of the C16-CoA-hDHHS20 mutant complex (probably, because this structure corresponds to a non-native dimer). These features of specific recognition of full-size acyl-CoA substrates support our previous hypothesis of "geometric and physicochemical selectivity" derived for simplified acyl-CoA analogues.


Asunto(s)
Acilcoenzima A , Aciltransferasas , Humanos , Acilcoenzima A/metabolismo , Acilación , Aciltransferasas/metabolismo , Ácidos Grasos/metabolismo , Especificidad por Sustrato
14.
J Biol Chem ; 298(11): 102467, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36087839

RESUMEN

Among voltage-gated potassium channel (KV) isoforms, KV1.6 is one of the most widespread in the nervous system. However, there are little data concerning its physiological significance, in part due to the scarcity of specific ligands. The known high-affinity ligands of KV1.6 lack selectivity, and conversely, its selective ligands show low affinity. Here, we present a designer peptide with both high affinity and selectivity to KV1.6. Previously, we have demonstrated that KV isoform-selective peptides can be constructed based on the simplistic α-hairpinin scaffold, and we obtained a number of artificial Tk-hefu peptides showing selective blockage of KV1.3 in the submicromolar range. We have now proposed amino acid substitutions to enhance their activity. As a result, we have been able to produce Tk-hefu-11 that shows an EC50 of ≈70 nM against KV1.3. Quite surprisingly, Tk-hefu-11 turns out to block KV1.6 with even higher potency, presenting an EC50 of ≈10 nM. Furthermore, we have solved the peptide structure and used molecular dynamics to investigate the determinants of selective interactions between artificial α-hairpinins and KV channels to explain the dramatic increase in KV1.6 affinity. Since KV1.3 is not highly expressed in the nervous system, we hope that Tk-hefu-11 will be useful in studies of KV1.6 and its functions.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Secuencia de Aminoácidos , Bloqueadores de los Canales de Potasio/química , Péptidos/química , Ligandos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv.1.1/metabolismo , Canal de Potasio Kv.1.2/metabolismo , Canal de Potasio Kv1.5/metabolismo
15.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012488

RESUMEN

Understanding fusion mechanisms employed by SARS-CoV-2 spike protein entails realistic transmembrane domain (TMD) models, while no reliable approaches towards predicting the 3D structure of transmembrane (TM) trimers exist. Here, we propose a comprehensive computational framework to model the spike TMD only based on its primary structure. We performed amino acid sequence pattern matching and compared the molecular hydrophobicity potential (MHP) distribution on the helix surface against TM homotrimers with known 3D structures and selected an appropriate template for homology modeling. We then iteratively built a model of spike TMD, adjusting "dynamic MHP portraits" and residue variability motifs. The stability of this model, with and without palmitoyl modifications downstream of the TMD, and several alternative configurations (including a recent NMR structure), was tested in all-atom molecular dynamics simulations in a POPC bilayer mimicking the viral envelope. Our model demonstrated unique stability under the conditions applied and conforms to known basic principles of TM helix packing. The original computational framework looks promising and could potentially be employed in the construction of 3D models of TM trimers for a wide range of membrane proteins.


Asunto(s)
SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Simulación de Dinámica Molecular , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/química
16.
Commun Biol ; 5(1): 706, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840781

RESUMEN

"Fluorescence-Activating and absorption-Shifting Tag" (FAST) is a well-studied fluorogen-activating protein with high brightness and low size, able to activate a wide range of fluorogens. This makes FAST a promising target for both protein and fluorogen optimization. Here, we describe the structure-based rational design of the enhanced FAST mutants, optimized for the N871b fluorogen. Using the spatial structure of the FAST/N871b complex, NMR relaxation analysis, and computer simulations, we identify the mobile regions in the complex and suggest mutations that could stabilize both the protein and the ligand. Two of our mutants appear brighter than the wild-type FAST, and these mutants provide up to 35% enhancement for several other fluorogens of similar structure, both in vitro and in vivo. Analysis of the mutants by NMR reveals that brighter mutants demonstrate the highest stability and lowest length of intermolecular H-bonds. Computer simulations provide the structural basis for such stabilization.


Asunto(s)
Colorantes Fluorescentes , Proteínas , Fluorescencia , Colorantes Fluorescentes/química
17.
Toxins (Basel) ; 14(2)2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35202176

RESUMEN

Cobra cytotoxins (CTs) belong to the three-fingered protein family and possess membrane activity. Here, we studied cytotoxin 13 from Naja naja cobra venom (CT13Nn). For the first time, a spatial model of CT13Nn with both "water" and "membrane" conformations of the central loop (loop-2) were determined by X-ray crystallography. The "water" conformation of the loop was frequently observed. It was similar to the structure of loop-2 of numerous CTs, determined by either NMR spectroscopy in aqueous solution, or the X-ray method. The "membrane" conformation is rare one and, to date has only been observed by NMR for a single cytotoxin 1 from N. oxiana (CT1No) in detergent micelle. Both CT13Nn and CT1No are S-type CTs. Membrane-binding of these CTs probably involves an additional step-the conformational transformation of the loop-2. To confirm this suggestion, we conducted molecular dynamics simulations of both CT1No and CT13Nn in the Highly Mimetic Membrane Model of palmitoiloleoylphosphatidylglycerol, starting with their "water" NMR models. We found that the both toxins transform their "water" conformation of loop-2 into the "membrane" one during the insertion process. This supports the hypothesis that the S-type CTs, unlike their P-type counterparts, require conformational adaptation of loop-2 during interaction with lipid membranes.


Asunto(s)
Proteínas Cardiotóxicas de Elápidos/química , Cristalografía por Rayos X/métodos , Citotoxinas/química , Modelos Moleculares , Estructura Molecular , Conformación Proteica
18.
J Med Chem ; 65(1): 665-687, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34978443

RESUMEN

We report the synthesis and antibacterial activities of a series of amphiphilic membrane-active peptides composed, in part, of various nongenetically coded hydrophobic amino acids. The lead cyclic peptides, 8C and 9C, showed broad-spectrum activity against drug-resistant Gram-positive (minimum inhibitory concentration (MIC) = 1.5-6.2 µg/mL) and Gram-negative (MIC = 12.5-25 µg/mL) bacteria. The cytotoxicity study showed the predominant lethal action of the peptides against bacteria as compared with mammalian cells. A plasma stability study revealed approximately 2-fold higher stability of lead cyclic peptides as compared to their linear counterparts after 24 h of incubation. A calcein dye leakage experiment revealed the membranolytic effect of the cyclic peptides. Nuclear magnetic resonance spectroscopy and molecular dynamics simulation studies of the interaction of the peptides with the phospholipid bilayer provided a solid structural basis to explain the membranolytic action of the peptides with atomistic details. These results highlight the potential of newly designed amphiphilic peptides as the next generation of peptide-based antibiotics.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Péptidos/síntesis química , Péptidos/farmacología , Péptidos Catiónicos Antimicrobianos , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Células HEK293 , Hemólisis/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular
19.
J Med Chem ; 64(22): 16464-16479, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34739758

RESUMEN

Alzheimer's disease (AD) is a severe neurodegenerative pathology with no effective treatment known. Toxic amyloid-ß peptide (Aß) oligomers play a crucial role in AD pathogenesis. All-d-Enantiomeric peptide D3 and its derivatives were developed to disassemble and destroy cytotoxic Aß aggregates. One of the D3-like compounds is approaching phase II clinical trials; however, high-resolution details of its disease-preventing or pharmacological actions are not completely clear. We demonstrate that peptide D3 stabilizing Aß monomer dynamically interacts with the extracellular juxtamembrane region of a membrane-bound fragment of an amyloid precursor protein containing the Aß sequence. MD simulations based on NMR measurement results suggest that D3 targets the amyloidogenic region, not compromising its α-helicity and preventing intermolecular hydrogen bonding, thus creating prerequisites for inhibition of early steps of Aß conversion into ß-conformation and its toxic oligomerization. An enhanced understanding of the D3 action molecular mechanism facilitates development of effective AD treatment and prevention strategies.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Precursor de Proteína beta-Amiloide/metabolismo , Oligopéptidos/química , Oligopéptidos/uso terapéutico , Secuencia de Aminoácidos , Animales , Humanos , Ratones , Simulación de Dinámica Molecular , Oligopéptidos/metabolismo , Unión Proteica , Estereoisomerismo
20.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200697

RESUMEN

To date, it has been reliably shown that the lipid bilayer/water interface can be thoroughly characterized by a sophisticated so-called "dynamic molecular portrait". The latter reflects a combination of time-dependent surface distributions of various physicochemical properties, inherent in both model lipid bilayers and natural multi-component cell membranes. One of the most important features of biomembranes is their mosaicity, which is expressed in the constant presence of lateral inhomogeneities, the sizes and lifetimes of which vary in a wide range-from 1 to 103 nm and from 0.1 ns to milliseconds. In addition to the relatively well-studied macroscopic domains (so-called "rafts"), the analysis of micro- and nanoclusters (or domains) that form an instantaneous picture of the distribution of structural, dynamic, hydrophobic, electrical, etc., properties at the membrane-water interface is attracting increasing interest. This is because such nanodomains (NDs) have been proven to be crucial for the proper membrane functioning in cells. Therefore, an understanding with atomistic details the phenomena associated with NDs is required. The present mini-review describes the recent results of experimental and in silico studies of spontaneously formed NDs in lipid membranes. The main attention is paid to the methods of ND detection, characterization of their spatiotemporal parameters, the elucidation of the molecular mechanisms of their formation. Biological role of NDs in cell membranes is briefly discussed. Understanding such effects creates the basis for rational design of new prospective drugs, therapeutic approaches, and artificial membrane materials with specified properties.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Nanoestructuras/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...