Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Diabetologia ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864887

RESUMEN

AIMS/HYPOTHESIS: Insulitis, a hallmark of inflammation preceding autoimmune type 1 diabetes, leads to the eventual loss of functional beta cells. However, functional beta cells can persist even in the face of continuous insulitis. Despite advances in immunosuppressive treatments, maintaining functional beta cells to prevent insulitis progression and hyperglycaemia remains a challenge. The cannabinoid type 1 receptor (CB1R), present in immune cells and beta cells, regulates inflammation and beta cell function. Here, we pioneer an ex vivo model mirroring human insulitis to investigate the role of CB1R in this process. METHODS: CD4+ T lymphocytes were isolated from peripheral blood mononuclear cells (PBMCs) from male and female individuals at the onset of type 1 diabetes and from non-diabetic individuals, RNA was extracted and mRNA expression was analysed by real-time PCR. Single beta cell expression from donors with type 1 diabetes was obtained from data mining. Patient-derived human islets from male and female cadaveric donors were 3D-cultured in solubilised extracellular matrix gel in co-culture with the same donor PBMCs, and incubated with cytokines (IL-1ß, TNF-α, IFN-γ) for 24-48 h in the presence of vehicle or increasing concentrations of the CB1R blocker JD-5037. Expression of CNR1 (encoding for CB1R) was ablated using CRISPR/Cas9 technology. Viability, intracellular stress and signalling were assayed by live-cell probing and real-time PCR. The islet function measured as glucose-stimulated insulin secretion was determined in a perifusion system. Infiltration of immune cells into the islets was monitored by microscopy. Non-obese diabetic mice aged 7 weeks were treated for 1 week with JD-5037, then euthanised. Profiling of immune cells infiltrated in the islets was performed by flow cytometry. RESULTS: CNR1 expression was upregulated in circulating CD4+ T cells from individuals at type 1 diabetes onset (6.9-fold higher vs healthy individuals) and in sorted islet beta cells from donors with type 1 diabetes (3.6-fold higher vs healthy counterparts). The peripherally restricted CB1R inverse agonist JD-5037 arrested the initiation of insulitis in humans and mice. Mechanistically, CB1R blockade prevented islet NO production and ameliorated the ATF6 arm of the unfolded protein response. Consequently, cyto/chemokine expression decreased in human islets, leading to sustained islet cell viability and function. CONCLUSIONS/INTERPRETATION: These results suggest that CB1R could be an interesting target for type 1 diabetes while highlighting the regulatory mechanisms of insulitis. Moreover, these findings may apply to type 2 diabetes where islet inflammation is also a pathophysiological factor. DATA AVAILABILITY: Transcriptomic analysis of sorted human beta cells are from Gene Expression Omnibus database, accession no. GSE121863, available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3448161 .

4.
Aging Dis ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38300640

RESUMEN

The choroid plexus (CP) is a vital brain structure essential for cerebrospinal fluid (CSF) production. Moreover, alterations in the CP's structure and function are implicated in molecular conditions and neuropathologies including multiple sclerosis, Alzheimer's disease, and stroke. Our goal is to provide the first characterization of the association between variation in the CP microstructure and macrostructure/volume using advanced magnetic resonance imaging (MRI) methodology, and blood-based biomarkers of Alzheimer's disease (Aß42/40 ratio; pTau181), neuroinflammation and neuronal injury (GFAP; NfL). We hypothesized that plasma biomarkers of brain pathology are associated with disordered CP structure. Moreover, since cerebral microstructural changes can precede macrostructural changes, we also conjecture that these differences would be evident in the CP microstructural integrity. Our cross-sectional study was conducted on a cohort of 108 well-characterized individuals, spanning 22-94 years of age, after excluding participants with cognitive impairments and non-exploitable MR imaging data. Established automated segmentation methods were used to identify the CP volume/macrostructure using structural MR images, while the microstructural integrity of the CP was assessed using our advanced quantitative high-resolution MR imaging of longitudinal and transverse relaxation times (T1 and T2). After adjusting for relevant covariates, positive associations were observed between pTau181, NfL and GFAP and all MRI metrics. These associations reached significance (p<0.05) except for CP volume vs. pTau181 (p=0.14), CP volume vs. NfL (p=0.35), and T2 vs. NFL (p=0.07). Further, negative associations between Aß42/40 and all MRI metrics were observed but reached significance only for Aß42/40 vs. T2 (p=0.04). These novel findings demonstrate that reduced CP macrostructural and microstructural integrity is positively associated with blood-based biomarkers of AD pathology, neurodegeneration/neuroinflammation and neurodegeneration. Degradation of the CP structure may co-occur with AD pathology and neuroinflammation ahead of clinically detectable cognitive impairment, making the CP a potential structure of interest for early disease detection or treatment monitoring.

5.
Mol Metab ; 82: 101906, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423253

RESUMEN

OBJECTIVE: Type 1 diabetes (T1D) occurs because of islet infiltration by autoreactive immune cells leading to destruction of beta cells and it is becoming evident that beta cell dysfunction partakes in this process. We previously reported that genetic deletion and pharmacological antagonism of the cannabinoid 1 receptor (CB1) in mice improves insulin synthesis and secretion, upregulates glucose sensing machinery, favors beta cell survival by reducing apoptosis, and enhances beta cell proliferation. Moreover, beta cell specific deletion of CB1 protected mice fed a high fat high sugar diet against islet inflammation and beta cell dysfunction. Therefore, we hypothesized that it would mitigate the dysfunction of beta cells in the precipitating events leading to T1D. METHODS: We genetically deleted CB1 specifically from beta cells in non-obese diabetic (NOD; NOD RIP Cre+ Cnr1fl/fl) mice. We evaluated female NOD RIP Cre+ Cnr1fl/fl mice and their NOD RIP Cre-Cnr1fl/fl and NOD RIP Cre+ Cnr1Wt/Wt littermates for onset of hyperglycemia over 26 weeks. We also examined islet morphology, islet infiltration by immune cells and beta cell function and proliferation. RESULTS: Beta cell specific deletion of CB1 in NOD mice significantly reduced the incidence of hyperglycemia by preserving beta cell function and mass. Deletion also prevented beta cell apoptosis and aggressive insulitis in NOD RIP Cre+ Cnr1fl/fl mice compared to wild-type littermates. NOD RIP Cre+ Cnr1fl/fl islets maintained normal morphology with no evidence of beta cell dedifferentiation or appearance of extra islet beta cells, indicating that protection from autoimmunity is inherent to genetic deletion of beta cell CB1. Pancreatic lymph node Treg cells were significantly higher in NOD RIP Cre+ Cnr1fl/flvs NOD RIP Cre-Cnr1fl/fl. CONCLUSIONS: Collectively these data demonstrate how protection of beta cells from metabolic stress during the active phase of T1D can ameliorate destructive insulitis and provides evidence for CB1 as a potential pharmacologic target in T1D.


Asunto(s)
Cannabinoides , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglucemia , Islotes Pancreáticos , Ratones , Femenino , Animales , Ratones Endogámicos NOD , Diabetes Mellitus Tipo 1/metabolismo , Islotes Pancreáticos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cannabinoides/metabolismo , Hiperglucemia/genética , Hiperglucemia/metabolismo
6.
Cancer Res ; 84(8): 1221-1236, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38330147

RESUMEN

Pancreatic cancer is more prevalent in older individuals and often carries a poorer prognosis for them. The relationship between the microenvironment and pancreatic cancer is multifactorial, and age-related changes in nonmalignant cells in the tumor microenvironment may play a key role in promoting cancer aggressiveness. Because fibroblasts have profound impacts on pancreatic cancer progression, we investigated whether age-related changes in pancreatic fibroblasts influence cancer growth and metastasis. Proteomics analysis revealed that aged fibroblasts secrete different factors than young fibroblasts, including increased growth/differentiation factor 15 (GDF-15). Treating young mice with GDF-15 enhanced tumor growth, whereas aged GDF-15 knockout mice showed reduced tumor growth. GDF-15 activated AKT, rendering tumors sensitive to AKT inhibition in an aged but not young microenvironment. These data provide evidence for how aging alters pancreatic fibroblasts and promotes tumor progression, providing potential therapeutic targets and avenues for studying pancreatic cancer while accounting for the effects of aging. SIGNIFICANCE: Aged pancreatic fibroblasts secrete GDF-15 and activate AKT signaling to promote pancreatic cancer growth, highlighting the critical role of aging-mediated changes in the pancreatic cancer microenvironment in driving tumor progression. See related commentary by Isaacson et al., p. 1185.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Pancreáticas , Animales , Ratones , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Neoplasias Pancreáticas/patología , Páncreas/patología , Fibroblastos/patología , Microambiente Tumoral , Línea Celular Tumoral , Fibroblastos Asociados al Cáncer/patología
7.
Life Sci ; 340: 122460, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286207

RESUMEN

AIMS: Extracellular vesicles (EVs) are involved in intercellular communication and are a topic of increasing interest due to their therapeutic potential. The aim of this study was to determine whether human islet-derived EVs contain insulin, and if so, what role do they play in glucose stimulated insulin secretion. MAIN METHODS: We isolated EVs from human islets culture and plasma to probe for insulin. Plasma from hyperglycemic glucose clamp experiments were also used to isolate and measure EV insulin content in response to a secretory stimulus. We performed immunogold electron microscopy for insulin presence in EVs. Co-culture experiments of isolated EVs with fresh islets were performed to examine the effect of EV cargo on insulin receptor signaling. KEY FINDINGS: EVs isolated from culture medium contained insulin. Glucose treatment of islets increased the level of EV insulin. Hyperglycemic glucose clamp experiments in humans also lead to increased levels of insulin in plasma-derived EVs. Immunogold electron microscopy and proteinase K-digestion experiments demonstrated that insulin in EVs predominantly associated with the exterior surface of EVs while western blot analyses uncovered the presence of only preproinsulin in EVs. Membrane-bound preproinsulin in EVs was capable of activating insulin signaling pathway in an insulin receptor-dependent manner. The physiological relevance of this finding was observed in priming of human naïve islets by EVs during glucose stimulated insulin secretion. SIGNIFICANCE: Our data suggest that (1) human islets secret insulin via an alternate pathway (EV-mediated) other than conventional granule-mediated insulin secretion, and (2) EV membrane bound preproinsulin is biologically active.


Asunto(s)
Vesículas Extracelulares , Células Secretoras de Insulina , Islotes Pancreáticos , Precursores de Proteínas , Humanos , Células Secretoras de Insulina/metabolismo , Secreción de Insulina , Receptor de Insulina/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Vesículas Extracelulares/metabolismo , Islotes Pancreáticos/metabolismo
8.
Biology (Basel) ; 13(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38248467

RESUMEN

Cellular senescence is defined as an irreversible cell cycle arrest accompanied by morphological and physiological alterations during aging. Red ginseng (RG), processed from fresh ginseng (Panax ginseng C.A. Meyer) with a one-time steaming and drying process, is a well-known beneficial herbal medicine showing antioxidant, anti-inflammatory, and anti-aging properties. The current study aimed to investigate the benefits of RG in alleviating hepatic cellular senescence and its adverse effects in 19-month-old aged mice. We applied two different intervention methods and durations to compare RG's effects in a time-dependent manner: (1) oral gavage injection for 4 weeks and (2) ad libitum intervention for 14 weeks. We observed that 4-week RG administration was exerted to maintain insulin homeostasis against developing age-associated insulin insensitivity and suppressed cellular senescence pathway in the liver and primary hepatocytes. Moreover, with remarkable improvement of insulin homeostasis, 14-week RG supplementation downregulated the activation of c-Jun N-terminal kinase (JNK) and its downstream transcriptional factor nuclear factor-κB (NF-κB) in aged mice. Lastly, RG treatment significantly reduced the senescence-associated ß-galactosidase (SA-ß-gal)-positive cells in primary hepatocytes and ionizing radiation (IR)-exposed mouse embryonic fibroblasts (MEFs). Taken together, we suggest that RG can be a promising candidate for a senolytic substance by preventing hepatic cellular senescence.

9.
Sci Rep ; 14(1): 1101, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212353

RESUMEN

Huntington's disease (HD) is increasingly recognized for diverse pathology outside of the nervous system. To describe the biology of HD in relation to functional progression, we previously analyzed the plasma and CSF metabolome in a cross-sectional study of participants who had various degrees of functional impairment. Here, we carried out an exploratory study in plasma from HD individuals over a 3-year time frame to assess whether differences exist between those with fast or absent clinical progression. There were more differences in circulating metabolite levels for fast progressors compared to absent progressors (111 vs 20, nominal p < 0.05). All metabolite changes in faster progressors were decreases, whereas some metabolite concentrations increased in absent progressors. Many of the metabolite levels that decreased in the fast progressors were higher at Screening compared to absent progressors but ended up lower by Year 3. Changes in faster progression suggest greater oxidative stress and inflammation (kynurenine, diacylglycerides, cysteine), disturbances in nitric oxide and urea metabolism (arginine, citrulline, ornithine, GABR), lower polyamines (putrescine and spermine), elevated glucose, and deficient AMPK signaling. Metabolomic differences between fast and absent progressors suggest the possibility of predicting functional decline in HD, and possibly delaying it with interventions to augment arginine, polyamines, and glucose regulation.


Asunto(s)
Enfermedad de Huntington , Humanos , Enfermedad de Huntington/metabolismo , Estudios Transversales , Poliaminas , Arginina , Glucosa , Progresión de la Enfermedad
10.
Aging Cell ; 23(1): e13902, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37350292

RESUMEN

The study of age-related biomarkers from different biofluids and tissues within the same individual might provide a more comprehensive understanding of age-related changes within and between compartments as these changes are likely highly interconnected. Understanding age-related differences by compartments may shed light on the mechanism of their reciprocal interactions, which may contribute to the phenotypic manifestations of aging. To study such possible interactions, we carried out a targeted metabolomic analysis of plasma, skeletal muscle, and urine collected from healthy participants, age 22-92 years, and identified 92, 34, and 35 age-associated metabolites, respectively. The metabolic pathways that were identified across compartments included inflammation and cellular senescence, microbial metabolism, mitochondrial health, sphingolipid metabolism, lysosomal membrane permeabilization, vascular aging, and kidney function.


Asunto(s)
Envejecimiento , Metabolómica , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Estudios Transversales , Biomarcadores/metabolismo , Senescencia Celular
11.
NEJM Evid ; 2(9)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38145006

RESUMEN

BACKGROUND: We sought to determine whether ongoing taste disturbance in the postacute sequelae of coronavirus disease 2019 period is associated with persistent virus in primary taste tissue. METHODS: We performed fungiform papillae biopsies on 16 patients who reported taste disturbance lasting more than 6 weeks after molecularly determined severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Then, on multiple occasions, we rebiopsied 10 of those patients who still had taste complaints for at least 6 months postinfection. Fungiform papillae obtained from other patients before March 2020 served as negative controls. We performed hematoxylin and eosin staining to examine fungiform papillae morphology and immunofluorescence and fluorescence in situ hybridization to look for evidence of persistent viral infection and immune response. RESULTS: In all patients, we found evidence of SARS-CoV-2, accompanying immune response and misshapen or absent taste buds with loss of intergemmal neurite fibers. Six patients reported normal taste perception by 6 months postinfection and were not further biopsied. In the remaining 10, the virus was eliminated in a seemingly random fashion from their fungiform papillae, but four patients still, by history, reported incomplete return to preinfection taste perception by the time we wrote this report. CONCLUSIONS: Our data show a temporal association in patients between functional taste, taste papillae morphology, and the presence of SARS-CoV-2 and its associated immunological changes. (Funded by Intramural Research Program/National Institute on Aging/National Institute of Allergy and Infectious Diseases/National Institutes of Health; ClinicalTrials.gov numbers NCT03366168 and NCT04565067.).


Asunto(s)
COVID-19 , Disgeusia , Papilas Gustativas , Humanos , COVID-19/complicaciones , Hibridación Fluorescente in Situ , SARS-CoV-2/genética , Gusto , Papilas Gustativas/anatomía & histología , Papilas Gustativas/patología , Percepción del Gusto , Lengua/anatomía & histología , Lengua/patología , Estados Unidos , Disgeusia/etiología , Disgeusia/patología
12.
Nat Commun ; 14(1): 6725, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872153

RESUMEN

The resolution of SARS-CoV-2 replication hinges on cell-mediated immunity, wherein CD8+ T cells play a vital role. Nonetheless, the characterization of the specificity and TCR composition of CD8+ T cells targeting non-spike protein of SARS-CoV-2 before and after infection remains incomplete. Here, we analyzed CD8+ T cells recognizing six epitopes from the SARS-CoV-2 nucleocapsid (N) protein and found that SARS-CoV-2 infection slightly increased the frequencies of N-recognizing CD8+ T cells but significantly enhanced activation-induced proliferation compared to that of the uninfected donors. The frequencies of N-specific CD8+ T cells and their proliferative response to stimulation did not decrease over one year. We identified the N222-230 peptide (LLLDRLNQL, referred to as LLL thereafter) as a dominant epitope that elicited the greatest proliferative response from both convalescent and uninfected donors. Single-cell sequencing of T cell receptors (TCR) from LLL-specific CD8+ T cells revealed highly restricted Vα gene usage (TRAV12-2) with limited CDR3α motifs, supported by structural characterization of the TCR-LLL-HLA-A2 complex. Lastly, transcriptome analysis of LLL-specific CD8+ T cells from donors who had expansion (expanders) or no expansion (non-expanders) after in vitro stimulation identified increased chromatin modification and innate immune functions of CD8+ T cells in non-expanders. These results suggests that SARS-CoV-2 infection induces LLL-specific CD8+ T cell responses with a restricted TCR repertoire.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Epítopos de Linfocito T , Receptores de Antígenos de Linfocitos T/metabolismo , Nucleocápside/metabolismo , Glicoproteína de la Espiga del Coronavirus
13.
Cell Rep ; 42(8): 112903, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37515772

RESUMEN

The choroid plexus (CP) is a source of trophic factors for the developing and mature brain. Insulin is produced in epithelial cells of the CP (EChPs), and its secretion is stimulated by Htr2c-mediated signaling. We modulated insulin expression in EChPs with intracerebroventricular injections of AAV5. Insulin overexpression in CP decelerates food intake, whereas its knockdown has the opposite effect. Insulin overexpression also results in reduced anxious behavior. Transcriptomic changes in the hypothalamus, especially in synapse-related processes, are also seen in mice overexpressing insulin in CP. Last, activation of Gq signaling in CP leads to acute Akt phosphorylation in neurons of the arcuate nucleus, indicating a direct action of CP-derived insulin on the hypothalamus. Taken together, our findings signify that CP is a relevant source of insulin in the central nervous system and that CP-derived insulin should be taken into consideration in future work pertaining to insulin actions in the brain.


Asunto(s)
Plexo Coroideo , Insulina , Ratones , Animales , Insulina/metabolismo , Plexo Coroideo/metabolismo , Encéfalo , Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo
14.
Hypertension ; 80(8): 1728-1738, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37283066

RESUMEN

BACKGROUND: It is unknown whether hypertension plays any role in cerebral myelination. To fill this knowledge gap, we studied 90 cognitively unimpaired adults, age range 40 to 94 years, who are participants in the Baltimore Longitudinal Study of Aging and the Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing to look for potential associations between hypertension and cerebral myelin content across 14 white matter brain regions. METHODS: Myelin content was probed using our advanced multicomponent magnetic resonance relaxometry method of myelin water fraction, a direct and specific magnetic resonance imaging measure of myelin content, and longitudinal and transverse relaxation rates (R1 and R2), 2 highly sensitive magnetic resonance imaging metrics of myelin content. We also applied diffusion tensor imaging magnetic resonance imaging to measure fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity values, which are metrics of cerebral microstructural tissue integrity, to provide context with previous magnetic resonance imaging findings. RESULTS: After adjustment of age, sex, systolic blood pressure, smoking status, diabetes status, and cholesterol level, our results indicated that participants with hypertension exhibited lower myelin water fraction, fractional anisotropy, R1 and R2 values and higher mean diffusivity, radial diffusivity, and axial diffusivity values, indicating lower myelin content and higher impairment to the brain microstructure. These associations were significant across several white matter regions, particularly in the corpus callosum, fronto-occipital fasciculus, temporal lobes, internal capsules, and corona radiata. CONCLUSIONS: These original findings suggest a direct association between myelin content and hypertension and form the basis for further investigations including longitudinal assessments of this relationship.


Asunto(s)
Hipertensión , Sustancia Blanca , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Persona de Mediana Edad , Anisotropía , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Hipertensión/diagnóstico por imagen , Hipertensión/patología , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Vaina de Mielina/patología , Agua , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Masculino , Femenino
15.
Antioxidants (Basel) ; 12(6)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37371895

RESUMEN

Dietary interventions with bioactive compounds have been found to suppress the accumulation of senescent cells and senescence-associated secretory phenotypes (SASPs). One such compound, curcumin (CUR), has beneficial health and biological effects, including antioxidant and anti-inflammatory properties, but its ability to prevent hepatic cellular senescence is unclear. The objective of this study was to investigate the effects of dietary CUR as an antioxidant on hepatic cellular senescence and determine its benefits on aged mice. We screened the hepatic transcriptome and found that CUR supplementation led to the downregulation of senescence-associated hepatic gene expressions in both usually fed and nutritionally challenged aged mice. Our results showed that CUR supplementation enhanced antioxidant properties and suppressed mitogen-activated protein kinase (MAPK) signaling cascades in the liver, particularly c-Jun N-terminal kinase (JNK) in aged mice and p38 in diet-induced obese aged mice. Furthermore, dietary CUR decreased the phosphorylation of nuclear factor-κB (NF-κB), a downstream transcription factor of JNK and p38, and inhibited the mRNA expression of proinflammatory cytokines and SASPs. The potency of CUR administration was demonstrated in aged mice via enhanced insulin homeostasis along with declined body weight. Taken together, these results suggest that CUR supplementation may be a nutritional strategy to prevent hepatic cellular senescence.

16.
Mol Cell ; 83(10): 1659-1676.e11, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37116496

RESUMEN

Epigenetic alterations are a key hallmark of aging but have been limitedly explored in tissues. Here, using naturally aged murine liver as a model and extending to other quiescent tissues, we find that aging is driven by temporal chromatin alterations that promote a refractory cellular state and compromise cellular identity. Using an integrated multi-omics approach and the first direct visualization of aged chromatin, we find that globally, old cells show H3K27me3-driven broad heterochromatinization and transcriptional suppression. At the local level, site-specific loss of H3K27me3 over promoters of genes encoding developmental transcription factors leads to expression of otherwise non-hepatocyte markers. Interestingly, liver regeneration reverses H3K27me3 patterns and rejuvenates multiple molecular and physiological aspects of the aged liver.


Asunto(s)
Cromatina , Histonas , Ratones , Animales , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Epigénesis Genética , Envejecimiento/genética , Factores de Transcripción/metabolismo
17.
Endocrinol Metab Clin North Am ; 52(2): 295-315, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36948781

RESUMEN

Taste is one of our five primary senses, and taste impairment has been shown to increase with aging. The ability to taste allows us to enjoy the food we eat and to avoid foods that are potentially spoiled or poisonous. Recent advances in our understanding of the molecular mechanisms of taste receptor cells located within taste buds help us decipher how taste works. The discoveries of "classic" endocrine hormones in taste receptor cells point toward taste buds being actual endocrine organs. A better understanding of how taste works may help in reversing taste impairment associated with aging.


Asunto(s)
Endocrinología , Papilas Gustativas , Humanos , Gusto , Hormonas , Envejecimiento
18.
bioRxiv ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36824822

RESUMEN

Epigenetic alterations are a key hallmark of aging but have been limitedly explored in tissues. Here, using naturally aged murine liver as a model and extending to other quiescent tissues, we find that aging is driven by temporal chromatin alterations that promote a refractory cellular state and compromise cellular identity. Using an integrated multi-omics approach, and the first direct visualization of aged chromatin we find that globally, old cells show H3K27me3-driven broad heterochromatinization and transcription suppression. At the local level, site-specific loss of H3K27me3 over promoters of genes encoding developmental transcription factors leads to expression of otherwise non-hepatocyte markers. Interestingly, liver regeneration reverses H3K27me3 patterns and rejuvenates multiple molecular and physiological aspects of the aged liver.

19.
Biomolecules ; 13(1)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36671553

RESUMEN

(1) Background and aims: Amyloidosis due to aggregation of amyloid-ß (Aß42) is a key pathogenic event in Alzheimer's disease (AD), whereas aggregation of mature islet amyloid polypeptide (IAPP37) in human islets leads to ß-cell dysfunction. The aim of this study is to uncover potential biomarkers that might additionally point to therapy for early AD patients. (2) Methods: We used bioinformatic approach to uncover novel IAPP isoforms and developed a quantitative selective reaction monitoring (SRM) proteomic assay to measure their peptide levels in human plasma and CSF from individuals with early AD and controls, as well as postmortem cerebrum of clinical confirmed AD and controls. We used Thioflavin T amyloid reporter assay to measure the IAPP isoform fibrillation propensity and anti-amyloid potential against aggregation of Aß42 and IAPP37. (3) Results: We uncovered hominid-specific IAPP isoforms: hIAPPß, which encodes an elongated propeptide, and hIAPPγ, which is processed to mature IAPP25 instead of IAPP37. We found that hIAPPß was significantly reduced in the plasma of AD patients with the accuracy of 89%. We uncovered that IAPP25 and a GDNF derived DNSP11 were nonaggregating peptides that inhibited the aggregation of IAPP37 and Aß42. (4) Conclusions: The novel peptides derived from hIAPP isoforms have potential to serve as blood-derived biomarkers for early AD and be developed as peptide based anti-amyloid medicine.


Asunto(s)
Enfermedad de Alzheimer , Hominidae , Animales , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Enfermedad de Alzheimer/genética , Proteómica , Proteínas Amiloidogénicas , Amiloide , Péptidos beta-Amiloides , Isoformas de Proteínas/genética , Biomarcadores
20.
Physiol Rev ; 103(2): 1193-1246, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36422992

RESUMEN

The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.


Asunto(s)
COVID-19 , Salud Poblacional , Papilas Gustativas , Humanos , Percepción del Gusto , Gusto/fisiología , SARS-CoV-2 , Lengua , Papilas Gustativas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...