Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542257

RESUMEN

While essential hypertension (HTN) is very prevalent, pulmonary arterial hypertension (PAH) is very rare in the general population. However, due to progressive heart failure, prognoses and survival rates are much worse in PAH. Patients with PAH are at a higher risk of developing supraventricular arrhythmias and malignant ventricular arrhythmias. The latter underlie sudden cardiac death regardless of the mechanical cardiac dysfunction. Systemic chronic inflammation and oxidative stress are causal factors that increase the risk of the occurrence of cardiac arrhythmias in hypertension. These stressful factors contribute to endothelial dysfunction and arterial pressure overload, resulting in the development of cardiac pro-arrhythmic conditions, including myocardial structural, ion channel and connexin43 (Cx43) channel remodeling and their dysfunction. Myocardial fibrosis appears to be a crucial proarrhythmic substrate linked with myocardial electrical instability due to the downregulation and abnormal topology of electrical coupling protein Cx43. Furthermore, these conditions promote ventricular mechanical dysfunction and heart failure. The treatment algorithm in HTN is superior to PAH, likely due to the paucity of comprehensive pathomechanisms and causal factors for a multitargeted approach in PAH. The intention of this review is to provide information regarding the role of Cx43 in the development of cardiac arrhythmias in hypertensive heart disease. Furthermore, information on the progress of therapy in terms of its cardioprotective and potentially antiarrhythmic effects is included. Specifically, the benefits of sodium glucose co-transporter inhibitors (SGLT2i), as well as sotatercept, pirfenidone, ranolazine, nintedanib, mirabegron and melatonin are discussed. Discovering novel therapeutic and antiarrhythmic strategies may be challenging for further research. Undoubtedly, such research should include protection of the heart from inflammation and oxidative stress, as these are primary pro-arrhythmic factors that jeopardize cardiac Cx43 homeostasis, the integrity of intercalated disk and extracellular matrix, and, thereby, heart function.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Hipertensión Arterial Pulmonar , Humanos , Conexina 43/metabolismo , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/etiología , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Trastorno del Sistema de Conducción Cardíaco , Hipertensión Pulmonar Primaria Familiar/complicaciones , Hipertensión/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Inflamación/tratamiento farmacológico
2.
Biomolecules ; 13(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36830700

RESUMEN

Prolonged population aging and unhealthy lifestyles contribute to the progressive prevalence of arterial hypertension. This is accompanied by low-grade inflammation and over time results in heart dysfunction and failure. Hypertension-induced myocardial structural and ion channel remodeling facilitates the development of both atrial and ventricular fibrillation, and these increase the risk of stroke and sudden death. Herein, we elucidate hypertension-induced impairment of "connexome" cardiomyocyte junctions. This complex ensures cell-to-cell adhesion and coupling for electrical and molecular signal propagation. Connexome dysfunction can be a key factor in promoting the occurrence of both cardiac arrhythmias and heart failure. However, the available literature indicates that arterial hypertension treatment can hamper myocardial structural remodeling, hypertrophy and/or fibrosis, and preserve connexome function. This suggests the pleiotropic effects of antihypertensive agents, including anti-inflammatory. Therefore, further research is required to identify specific molecular targets and pathways that will protect connexomes, and it is also necessary to develop new approaches to maintain heart function in patients suffering from primary or pulmonary arterial hypertension.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Humanos , Arritmias Cardíacas , Miocardio , Insuficiencia Cardíaca/complicaciones , Miocitos Cardíacos
3.
Biomedicines ; 10(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36359339

RESUMEN

This review focuses on cardiac atrophy resulting from mechanical or metabolic unloading due to various conditions, describing some mechanisms and discussing possible strategies or interventions to prevent, attenuate or reverse myocardial atrophy. An improved awareness of these conditions and an increased focus on the identification of mechanisms and therapeutic targets may facilitate the development of the effective treatment or reversion for cardiac atrophy. It appears that a decrement in the left ventricular mass itself may be the central component in cardiac deconditioning, which avoids the occurrence of life-threatening arrhythmias. The depressed myocardial contractility of atrophied myocardium along with the upregulation of electrical coupling protein, connexin43, the maintenance of its topology, and enhanced PKCƐ signalling may be involved in the anti-arrhythmic phenotype. Meanwhile, persistent myocardial atrophy accompanied by oxidative stress and inflammation, as well as extracellular matrix fibrosis, may lead to severe cardiac dysfunction, and heart failure. Data in the literature suggest that the prevention of heart failure via the attenuation or reversion of myocardial atrophy is possible, although this requires further research.

4.
Mar Drugs ; 19(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34940658

RESUMEN

Light pollution disturbs circadian rhythm, and this can also be deleterious to the heart by increased susceptibility to arrhythmias. Herein, we investigated if rats exposed to continuous light had altered myocardial gene transcripts and/or protein expression which affects arrhythmogenesis. We then assessed if Omacor® supplementation benefitted affected rats. Male and female spontaneously hypertensive (SHR) and normotensive Wistar rats (WR) were housed under standard 12 h/12 h light/dark cycles or exposed to 6-weeks continuous 300 lux light for 24 h. Half the rats were then treated with 200 mg/100 g b.w. Omacor®. Continuous light resulted in higher male rat vulnerability to malignant ventricular fibrillation (VF). This was linked with myocardial connexin-43 (Cx43) down-regulation and deteriorated intercellular electrical coupling, due in part to increased pro-inflammatory NF-κB and iNOS transcripts and decreased sarcoplasmic reticulum Ca2+ATPase transcripts. Omacor® treatment increased the electrical threshold to induce the VF linked with amelioration of myocardial Cx43 mRNA and Cx43 protein levels and the suppression of NF-κB and iNOS. This indicates that rat exposure to continuous light results in deleterious cardiac alterations jeopardizing intercellular Cx43 channel-mediated electrical communication, thereby increasing the risk of malignant arrhythmias. The adverse effects were attenuated by treatment with Omacor®, thus supporting its potential benefit and the relevance of monitoring omega-3 index in human populations at risk.


Asunto(s)
Arritmias Cardíacas/prevención & control , Suplementos Dietéticos , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Contaminación Lumínica , Estrés Fisiológico , Animales , Organismos Acuáticos , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/fisiopatología , Presión Sanguínea/efectos de los fármacos , Conexina 43/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Docosahexaenoicos/química , Combinación de Medicamentos , Ácido Eicosapentaenoico/administración & dosificación , Ácido Eicosapentaenoico/química , Femenino , Corazón/efectos de los fármacos , Hipertensión/complicaciones , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Wistar
5.
Antioxidants (Basel) ; 9(6)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580481

RESUMEN

Cardiac ß-adrenergic overstimulation results in oxidative stress, hypertrophy, ischemia, lesion, and fibrosis rendering the heart vulnerable to malignant arrhythmias. We aimed to explore the anti-arrhythmic efficacy of the anti-oxidative and anti-inflammatory compounds, melatonin, and omega-3, and their mechanisms of actions in normotensive and hypertensive rats exposed to isoproterenol (ISO) induced ß-adrenergic overdrive. Eight-month-old, male SHR, and Wistar rats were injected during 7 days with ISO (cumulative dose, 118 mg/kg). ISO rats were either untreated or concomitantly treated with melatonin (10 mg/kg/day) or omega-3 (Omacor, 1.68 g/kg/day) until 60 days of ISO withdrawal and compared to non-ISO controls. Findings showed that both melatonin and omega-3 increased threshold current to induce ventricular fibrillation (VF) in ISO rats regardless of the strain. Prolonged treatment with these compounds resulted in significant suppression of ISO-induced extracellular matrix alterations, as indicated by reduced areas of diffuse fibrosis and decline of hydroxyproline, collagen-1, SMAD2/3, and TGF-ß1 protein levels. Importantly, the highly pro-arrhythmic ISO-induced disordered cardiomyocyte distribution of electrical coupling protein, connexin-43 (Cx43), and its remodeling (lateralization) were significantly attenuated by melatonin and omega-3 in Wistar as well as SHR hearts. In parallel, both compounds prevented the post-ISO-related increase in Cx43 variant phosphorylated at serine 368 along with PKCε, which are known to modulate Cx43 remodeling. Melatonin and omega-3 increased SOD1 or SOD2 protein levels in ISO-exposed rats of both strains. Altogether, the results indicate that anti-arrhythmic effects of melatonin and omega-3 might be attributed to the protection of myocardial Cx43 topology and suppression of fibrosis in the setting of oxidative stress induced by catecholamine overdrive in normotensive and hypertensive rats.

6.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383853

RESUMEN

Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.


Asunto(s)
Conexina 43/metabolismo , Conexinas/metabolismo , Activación del Canal Iónico , Miocardio/metabolismo , Animales , Antiarrítmicos/farmacología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Conexina 43/ultraestructura , Conexinas/ultraestructura , Susceptibilidad a Enfermedades , Humanos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Miocardio/ultraestructura
7.
Int J Mol Sci ; 20(15)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374823

RESUMEN

Heart function and its susceptibility to arrhythmias are modulated by thyroid hormones (THs) but the responsiveness of hypertensive individuals to thyroid dysfunction is elusive. We aimed to explore the effect of altered thyroid status on crucial factors affecting synchronized heart function, i.e., connexin-43 (Cx43) and extracellular matrix proteins (ECM), in spontaneously hypertensive rats (SHRs) compared to normotensive Wistar Kyoto rats (WKRs). Basal levels of circulating THs were similar in both strains. Hyperthyroid state (HT) was induced by injection of T3 (0.15 mg/kg b.w. for eight weeks) and hypothyroid state (HY) by the administration of methimazol (0.05% for eight weeks). The possible benefit of omega-3 polyunsaturated fatty acids (Omacor, 200 mg/kg for eight weeks) intake was examined as well. Reduced levels of Cx43 in SHRs were unaffected by alterations in THs, unlike WKRs, in which levels of Cx43 and its phosphorylated form at serine368 were decreased in the HT state and increased in the HY state. This specific Cx43 phosphorylation, attributed to enhanced protein kinase C-epsilon signaling, was also increased in HY SHRs. Altered thyroid status did not show significant differences in markers of ECM or collagen deposition in SHRs. WKRs exhibited a decrease in levels of profibrotic transforming growth factor ß1 and SMAD2/3 in HT and an increase in HY, along with enhanced interstitial collagen. Short-term intake of omega-3 polyunsaturated fatty acids did not affect any targeted proteins significantly. Key findings suggest that myocardial Cx43 and ECM responses to altered thyroid status are blunted in SHRs compared to WKRs. However, enhanced phosphorylation of Cx43 at serine368 in hypothyroid SHRs might be associated with preservation of intercellular coupling and alleviation of the propensity of the heart to malignant arrhythmias.


Asunto(s)
Conexina 43/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Hipertensión/metabolismo , Miocardio/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Hipertensión/sangre , Masculino , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Hormonas Tiroideas/sangre
8.
J Pineal Res ; 67(4): e12605, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31408542

RESUMEN

Hypokalemia prolongs the QRS and QT intervals, deteriorates intercellular coupling, and increases the risk for arrhythmia. Melatonin preserves gap junctions and shortens action potential as potential antiarrhythmic mechanisms, but its properties under hypokalemia remain unknown. We hypothesized that melatonin protects against low potassium-induced arrhythmias through the activation of its receptors, resulting in action potential shortening and connexin-43 preservation. After stabilization in Krebs-Henseleit solution (4.5 mEq/L K+ ), isolated hearts from Wistar rats underwent perfusion with low-potassium (1 mEq/L) solution and melatonin (100 µmol/L), a melatonin receptor blocker (luzindole, 5 µmol/L), melatonin + luzindole or vehicle. The primary endpoint of the study was the prevention of ventricular fibrillation. Electrocardiography was used, and epicardial action potentials and heart function were measured and analyzed. The ventricular expression, dephosphorylation, and distribution of connexin-43 were examined. Melatonin reduced the incidence of low potassium-induced ventricular fibrillation from 100% to 59%, delayed the occurrence of ventricular fibrillation and induced a faster recovery of sinus rhythm during potassium restitution. Melatonin prevented QRS widening, action potential activation delay, and the prolongation of action potential duration at 50% of repolarization. Other ECG and action potential parameters, the left ventricular developed pressure, and nonsustained ventricular arrhythmias did not differ among groups. Melatonin prevented connexin-43 dephosphorylation and its abnormal topology (lateralization). Luzindole abrogated the protective effects of melatonin on electrophysiological properties and connexin-43 misdistribution. Our results indicate that melatonin receptor activation protects against low potassium-induced ventricular fibrillation, shortens action potential duration, preserves ventricular electrical activation, and prevents acute changes in connexin-43 distribution. All of these properties make melatonin a remarkable antifibrillatory agent.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Conexina 43/metabolismo , Melatonina/farmacología , Miocardio/metabolismo , Potasio/efectos adversos , Receptores de Melatonina/metabolismo , Fibrilación Ventricular/metabolismo , Animales , Masculino , Miocardio/patología , Potasio/farmacología , Ratas , Ratas Wistar , Fibrilación Ventricular/inducido químicamente , Fibrilación Ventricular/patología , Fibrilación Ventricular/fisiopatología
9.
Can J Physiol Pharmacol ; 97(9): 829-836, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30908945

RESUMEN

Two important aspects of cardiac adaptive response to pregnancy have been studied in normal as well as hypoxic conditions: (1) intercellular signaling mediated by myocardial connexin-43 (Cx43) that is crucial to synchronize heart function; (2) extracellular signaling mediated by matrix metalloproteinase-2 (MMP-2) that is an early marker of extracellular matrix remodeling. Myocardial Cx43 distribution and functional capillary density were determined as well. Hypoxia was induced by exposure of rats to 10.5% O2 and 89.5% N2 in a hermetically sealed chamber. Findings showed that pregnancy resulted in a significant increase of Cx43 protein expression, its functional phosphorylated forms, and enhanced capillary density while did not affect either expression of total MMP-2 or its activity. Maternal hypoxia for 12 or 16 h did not affect elevated Cx43 but enhanced its distribution on lateral sides of the cardiomyocytes. In contrast, hypoxia of nonpregnant rats resulted in upregulation of Cx43, its lateral distribution, and enhanced capillary density. Hypoxia did not affect myocardial MMP-2 either in pregnant or nonpregnant rats. Cardiac adaptive response to pregnancy is accompanied by enhanced Cx43 without changes in MMP-2 signaling. Pregnant rat heart is tolerant to short-term hypoxemia, while nonpregnant rat heart reacts by upregulation of Cx43 and increased capillary density.


Asunto(s)
Conexina 43/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Miocardio/citología , Oxígeno/metabolismo , Transducción de Señal , Animales , Femenino , Miocardio/metabolismo , Proyectos Piloto , Embarazo , Ratas
10.
Mol Cell Biochem ; 454(1-2): 191-202, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30446908

RESUMEN

We aimed to explore whether specific high-sucrose intake in older female rats affects myocardial electrical coupling protein, connexin-43 (Cx43), protein kinase C (PKC) signaling, miR-1 and miR-30a expression, and susceptibility of the heart to malignant arrhythmias. Possible benefit of the supplementation with melatonin (40 µg/ml/day) and omega-3 polyunsaturated fatty acids (Omacor, 25 g/kg of rat chow) was examined as well. Results have shown that 8 weeks lasting intake of 30% sucrose solution increased serum cholesterol, triglycerides, body weight, heart weight, and retroperitoneal adipose tissues. It was accompanied by downregulation of cardiac Cx43 and PKCε signaling along with an upregulation of myocardial PKCδ and miR-30a rendering the heart prone to ventricular arrhythmias. There was a clear benefit of melatonin or omega-3 PUFA supplementation due to their antiarrhythmic effects associated with the attenuation of myocardial Cx43, PKC, and miR-30a abnormalities as well as adiposity. The potential impact of these findings may be considerable, and suggests that high-sucrose intake impairs myocardial signaling mediated by Cx43 and PKC contributing to increased susceptibility of the older obese female rat hearts to malignant arrhythmias.


Asunto(s)
Conexina 43/metabolismo , Sacarosa en la Dieta/efectos adversos , Ácidos Grasos Omega-3/farmacología , Corazón/efectos de los fármacos , Melatonina/farmacología , Obesidad/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Antiarrítmicos/metabolismo , Antiarrítmicos/farmacología , Arritmias Cardíacas/etiología , Ácidos Grasos Omega-3/metabolismo , Femenino , Melatonina/metabolismo , MicroARNs/metabolismo , Miocardio/metabolismo , Obesidad/inducido químicamente , Obesidad/complicaciones , Obesidad/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Ratas , Ratas Wistar
11.
Int J Mol Sci ; 19(4)2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642568

RESUMEN

Radiation of the chest during cancer therapy is deleterious to the heart, mostly due to oxidative stress and inflammation related injury. A single sub-lethal dose of irradiation has been shown to result in compensatory up-regulation of the myocardial connexin-43 (Cx43), activation of the protein kinase C (PKC) signaling along with the decline of microRNA (miR)-1 and an increase of miR-21 levels in the left ventricle (LV). We investigated whether drugs with antioxidant, anti-inflammatory or vasodilating properties, such as aspirin, atorvastatin, and sildenafil, may affect myocardial response in the LV and right ventricle (RV) following chest irradiation. Adult, male Wistar rats were subjected to a single sub-lethal dose of chest radiation at 25 Gy and treated with aspirin (3 mg/day), atorvastatin (0.25 mg/day), and sildenafil (0.3 mg/day) for six weeks. Cx43, PKCε and PKCδ proteins expression and levels of miR-1 as well as miR-21 were determined in the LV and RV. Results showed that the suppression of miR-1 was associated with an increase of total and phosphorylated forms of Cx43 as well as PKCε expression in the LV while having no effect in the RV post-irradiation as compared to the non-irradiated rats. Treatment with aspirin and atorvastatin prevented an increase in the expression of Cx43 and PKCε without change in the miR-1 levels. Furthermore, treatment with aspirin, atorvastatin, and sildenafil completely prevented an increase of miR-21 in the LV while having partial effect in the RV post irradiation. The increase in pro-apoptotic PKCδ was not affected by any of the used treatment. In conclusion, irradiation and drug-induced changes were less pronounced in the RV as compared to the LV. Treatment with aspirin and atorvastatin interfered with irradiation-induced compensatory changes in myocardial Cx43 protein and miR-21 by preventing their elevation, possibly via amelioration of oxidative stress and inflammation.


Asunto(s)
Antioxidantes/farmacología , Aspirina/farmacología , Atorvastatina/farmacología , Conexina 43/metabolismo , Corazón/efectos de la radiación , MicroARNs/genética , Traumatismos por Radiación/metabolismo , Animales , Antioxidantes/uso terapéutico , Aspirina/uso terapéutico , Atorvastatina/uso terapéutico , Masculino , Miocardio/metabolismo , Traumatismos por Radiación/tratamiento farmacológico , Radiación Ionizante , Ratas , Ratas Wistar
12.
Artículo en Inglés | MEDLINE | ID: mdl-30740090

RESUMEN

Remodeling of the cellular distribution of gap junctions formed mainly by connexin-43 (Cx43) can be related to the increased incidence of cardiac arrhythmias. It has been shown that adaptation to chronic intermittent hypobaric hypoxia (IHH) attenuates the incidence and severity of ischemic and reperfusion ventricular arrhythmias and increases the proportion of anti-arrhythmic n-3 polyunsaturated fatty acids (n-3 PUFA) in heart phospholipids. Wistar rats were exposed to simulated IHH (7,000 m, 8-h/day, 35 exposures) and compared with normoxic controls (N). Cx43 expression, phosphorylation, localization and n-3 PUFA proportion were analyzed in left ventricular myocardium. Compared to N, IHH led to higher expression of total Cx43, its variant phosphorylated at Ser368 [p-Cx43(Ser368)], which maintains "end to end" communication, as well as p-Cx43(Ser364/365), which facilitates conductivity. By contrast, expression of non-phosphorylated Cx43 and p-Cx43(Ser278/289), attenuating intercellular communication, was lower in IHH than in N. IHH also resulted in increased expression of protein kinase A and protein kinase G while casein kinase 1 did not change compared to N. In IHH group, which exhibited reduced incidence of ischemic ventricular arrhythmias, Cx43 and p-Cx43(Ser368) were more abundant at "end to end" gap junctions than in N group and this difference was preserved after acute regional ischemia (10 min). We further confirmed higher n-3 PUFA proportion in heart phospholipids after adaptation to IHH, which was even further increased by ischemia. Our results suggest that adaptation to IHH alters expression, phosphorylation and distribution of Cx43 as well as cardioprotective n-3PUFA proportion suggesting that the anti-arrhythmic phenotype elicited by IHH can be at least partly related to the stabilization of the "end to end" conductivity between cardiomyocytes during brief ischemia.

13.
Nutrients ; 9(11)2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084142

RESUMEN

Omega-3 polyunsaturated fatty acids (PUFAs), namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are permanent subjects of interest in relation to the protection of cardiovascular health and the prevention of the incidence of both ventricular and atrial arrhythmias. The purpose of this updated review is to focus on the novel cellular and molecular effects of omega-3 PUFAs, in the context of the mechanisms and factors involved in the development of cardiac arrhythmias; to provide results of the most recent studies on the omega-3 PUFA anti-arrhythmic efficacy and to discuss the lack of the benefit in relation to omega-3 PUFA status. The evidence is in the favor of omega-3 PUFA acute and long-term treatment, perhaps with mitochondria-targeted antioxidants. However, for a more objective evaluation of the anti-arrhythmic potential of omega-3 PUFAs in clinical trials, it is necessary to monitor the basal pre-interventional omega-3 status of individuals, i.e., red blood cell content, omega-3 index and free plasma levels. In the view of evidence-based medicine, it seems to be crucial to aim to establish new approaches in the prevention of cardiac arrhythmias and associated morbidity and mortality that comes with these conditions.


Asunto(s)
Antiarrítmicos/farmacología , Ácidos Grasos Omega-3/farmacología , Animales , Arritmias Cardíacas/tratamiento farmacológico , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Humanos , Metaanálisis como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
Can J Physiol Pharmacol ; 95(8): 911-919, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28459162

RESUMEN

We aimed to explore whether myocardial intercellular channel protein connexin-43 (Cx43) along with PKCε and MMP-2 might be implicated in responses to acute cardiac injury induced by 2 distinct sublethal interventions in Wistar rats. Animals underwent either single chest irradiation at dose of 25 Gy or subcutaneous injection of isoproterenol (ISO, 120 mg/kg) and were compared with untreated controls. Forty-two days post-interventions, the hearts were excised and left ventricles were used for analysis. The findings showed an increase of total as well as phosphorylated forms of myocardial Cx43 regardless of the type of interventions. Enhanced phosphorylation of Cx43 coincided with increased PKCε expression in both models. Elevation of Cx43 was associated with its enhanced distribution on lateral surfaces of the cardiomyocytes in response to both interventions, while focal areas of fibrosis without Cx43 were found in post-ISO but not post-irradiated rat hearts. In parallel, MMP-2 activity was decreased in the former while increased in the latter. Cardiac function was maintained and the susceptibility of the hearts to ischemia or malignant arrhythmias was not deteriorated 42 days after interventions when compared with controls. Altogether, the findings indicate that myocardial Cx43 is most likely implicated in potentially salutary responses to acute heart injury.


Asunto(s)
Cardiomiopatías/metabolismo , Conexina 43/metabolismo , Miocardio/metabolismo , Regulación hacia Arriba , Animales , Cardiomiopatías/inducido químicamente , Cardiomiopatías/patología , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Espacio Extracelular/efectos de la radiación , Isoproterenol/efectos adversos , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Miocardio/patología , Proteína Quinasa C-epsilon/metabolismo , Ratas , Ratas Wistar , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/efectos de la radiación
15.
Gen Physiol Biophys ; 35(2): 215-22, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26830133

RESUMEN

Intercellular connexin-43 (Cx43) channels are essential for electrical coupling and direct cardiac cell to cell communication to ensure heart function. Expression of Cx43 is altered due to stressful conditions and also affected by the alterations in extracellular matrix. We aimed to explore the effect of chest irradiation on myocardial expression of Cx43 and miR-1 which regulates GJA1 gene transcription for Cx43. Implication of miR-21 that regulates expression of extracellular matrix proteins and PKC signalling that may affect Cx43-mediated coupling was examined as well. Western blot and real-time PCR analyses revealed that six weeks after the exposure of healthy Wistar rats chest to single irradiation of 25 Gy significant myocardial alterations were observed: 1)/ increase of total Cx43 protein expression and its functional phosphorylated forms; 2) suppressed levels of miR-1; 3) enhanced expression of PKCε which phosphorylates Cx43; 4) increase of miR-21 levels; 5) increase of PKCδ expression. These results suggest that irradiation causes post-transcriptional regulation of myocardial Cx43 expression by miR-1 possibly through miR-21 and PKC signalling. We conclude that single dose of irradiation has the potential to enhance myocardial intercellular communication that might be beneficial for the heart that needs to be investigated in details in further studies.


Asunto(s)
Conexina 43/metabolismo , Lesiones Cardíacas/metabolismo , MicroARNs/metabolismo , Proteína Quinasa C/metabolismo , Traumatismos por Radiación/metabolismo , Adaptación Fisiológica/efectos de la radiación , Animales , Corazón/efectos de la radiación , Masculino , Miocardio/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...