Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Mech Ageing Dev ; 218: 111912, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38266781

RESUMEN

The global population over 60 years old is projected to reach 1.5 billion by 2050. Understanding age-related disorders and gender-specificities is crucial for a healthy aging. Reliable age-related biomarkers are needed, preferentially obtained through non-invasive methods. Urine-derived stem cells (UDSCs) can be easily obtained, although a detailed bioenergetic characterization, according to the donor aging, remain unexplored. UDSCs were isolated from young and elderly adult women (22-35 and 70-94 years old, respectively). Surprisingly, UDSCs from elderly subjects exhibited significantly higher maximal oxygen consumption and bioenergetic health index than those from younger individuals, evaluated through oxygen consumption rate. Exploratory data analysis methods were applied to engineer a minimal subset of features for the classification and stratification of UDSCs. Additionally, RNAseq of UDSCs was performed to identify age-related transcriptional changes. Transcriptional analysis revealed downregulation of genes related to glucuronidation and estrogen metabolism, and upregulation of inflammation-related genes in UDSCs from elderly individuals. This study demonstrates unexpected differences in the UDSCs' OCR between young and elderly individuals, revealing improved bioenergetics in concurrent with an aged-like transcriptome signature. UDSCs offer a non-invasive model for studying age-related changes, holding promise for aging research and therapeutic studies.


Asunto(s)
Metabolismo Energético , Transcriptoma , Anciano , Humanos , Femenino , Envejecimiento/genética , Envejecimiento/metabolismo , Biomarcadores/metabolismo , Células Madre/metabolismo
2.
Vet Sci ; 10(11)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37999464

RESUMEN

This study investigates the influence of sex and a dietary transition on the gut microbiota of a local Portuguese pig breed. Three groups of male Alentejano pigs (n = 10 each) were raised between ~40 and 160 kg LW. Group C included pigs that were surgically castrated, while the I group included intact ones; both were fed with commercial diets. The third group, IExp, included intact pigs that were fed commercial diets until ~130 kg, then replaced by an experimental diet based on legumes and agro-industrial by-products between ~130 and 160 kg. Fecal samples were collected two weeks before slaughter. The total DNA was extracted and used for 16S metabarcoding on a MiSeq® System. The dietary transition from a commercial diet to the experimental diet substantially increased and shifted the diversity observed. Complex carbohydrate fermenting bacteria, such as Ruminococcus spp. and Sphaerochaeta spp., were significantly more abundant in IExp (q < 0.05). On the other hand, castrated pigs presented a significantly lower abundance of the potential probiotic, Roseburia spp. and Lachnospiraceae NK4A136 group (q < 0.01), bacteria commonly associated with better gut health and lower body fat composition. Understanding the role of gut microbiota is paramount to ensure a low skatole deposition and consumers' acceptance of pork products from non-castrated male pigs.

3.
NAR Genom Bioinform ; 5(3): lqad073, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37608803

RESUMEN

Multiple displacement amplification (MDA) has proven to be a useful technique for obtaining large amounts of DNA from tiny samples in genomics and metagenomics. However, MDA has limitations, such as amplification artifacts and biases that can interfere with subsequent quantitative analysis. To overcome these challenges, alternative methods and engineered DNA polymerase variants have been developed. Here, we present new MDA protocols based on the primer-independent DNA polymerase (piPolB), a replicative-like DNA polymerase endowed with DNA priming and proofreading capacities. These new methods were tested on a genomes mixture containing diverse sequences with high-GC content, followed by deep sequencing. Protocols relying on piPolB as a single enzyme cannot achieve competent amplification due to its limited processivity and the presence of ab initio DNA synthesis. However, an alternative method called piMDA, which combines piPolB with Φ29 DNA polymerase, allows proficient and faithful amplification of the genomes. In addition, the prior denaturation step commonly performed in MDA protocols is dispensable, resulting in a more straightforward protocol. In summary, piMDA outperforms commercial methods in the amplification of genomes and metagenomes containing high GC sequences and exhibits similar profiling, error rate and variant determination as the non-amplified samples.

4.
Nutrients ; 15(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37432234

RESUMEN

Describing diet-related effects on the gut microbiome is essential for understanding its interactions with fat and/or sugar-rich diets to promote obesity-related metabolic diseases. Here, we sequenced the V3-V4 hypervariable region of the bacterial 16S rRNA gene to study the composition and dynamics of the gut microbiome of adult mice fed diets rich in fat and/or sugar, at 9 and 18 weeks of diet. Under high-fat, high-sugar diet, the abundances of Tuzzerella and Anaerovorax were transiently increased at 9 weeks, while Lactobacillus remained elevated at 9 and 18 weeks. The same diet decreased the abundances of Akkermansia, Paludicola, Eisenbergiella, and Butyricicoccus at 9 and 18 weeks, while Intestinimonas and UCG-009 of the Butyricicoccaceae family responded only at 18 weeks. The high-fat diet decreased the abundances of UBA1819 at 9 weeks, and Gastranaerophilales, Clostridia UCG-014, and ASF356 at 9 and 18 weeks. Those of Marvinbryantia, Harryflintia, Alistipes, Blautia, Lachnospiraceae A2, Eubacterium coprostanoligenes group, and Eubacterium brachy group were lowered only at 18 weeks. Interestingly, these genera were not sensitive to the high-sugar diet. The mouse gut microbiome was differentially affected by diets rich in fat or fat and sugar. The differences observed at 9 and 18 weeks indicate a progressive microbiome response.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillales , Animales , Ratones , Azúcares , Grasas de la Dieta , ARN Ribosómico 16S/genética , Dieta Alta en Grasa/efectos adversos , Clostridiales , Clostridiaceae
5.
Theranostics ; 13(11): 3707-3724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441602

RESUMEN

Background: Extracellular vesicles (EVs) carry bioactive molecules associated with various biological processes, including miRNAs. In both Huntington's disease (HD) models and human samples, altered expression of miRNAs involved in synapse regulation was reported. Recently, the use of EV cargo to reverse phenotypic alterations in disease models with synaptopathy as the end result of the pathophysiological cascade has become an interesting possibility. Methods: Here, we assessed the contribution of EVs to GABAergic synaptic alterations using a human HD model and studied the miRNA content of isolated EVs. Results: After differentiating human induced pluripotent stem cells into electrophysiologically active striatal-like GABAergic neurons, we found that HD-derived neurons displayed reduced density of inhibitory synapse markers and GABA receptor-mediated ionotropic signaling. Treatment with EVs secreted by control (CTR) fibroblasts reversed the deficits in GABAergic synaptic transmission and increased the density of inhibitory synapses in HD-derived neuron cultures, while EVs from HD-derived fibroblasts had the opposite effects on CTR-derived neurons. Moreover, analysis of miRNAs from purified EVs identified a set of differentially expressed miRNAs between manifest HD, premanifest, and CTR lines with predicted synaptic targets. Conclusion: The EV-mediated reversal of the abnormal GABAergic phenotype in HD-derived neurons reinforces the potential role of EV-miRNAs on synapse regulation.


Asunto(s)
Vesículas Extracelulares , Enfermedad de Huntington , Células Madre Pluripotentes Inducidas , MicroARNs , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/metabolismo , Neuronas GABAérgicas/metabolismo , Vesículas Extracelulares/metabolismo
6.
Front Plant Sci ; 14: 1191923, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342130

RESUMEN

The root-knot nematode (RKN) Meloidogyne luci presents a threat to the production of several important crops. This nematode species was added to the European Plant Protection Organization Alert list in 2017. The scarce availability of efficient nematicides to control RKN and the phasing out of nematicides from the market have intensified the search for alternatives, such as phytochemicals with bionematicidal properties. The nematicidal activity of 1,4-naphthoquinone (1,4-NTQ) against M. luci has been demonstrated; however, knowledge of the potential mode(s) of action of this compound is still scarce. In this study, the transcriptome profile of M. luci second-stage juveniles (J2), the infective stage, in response to 1,4-NTQ exposure was determined by RNA-seq to identify genes and pathways that might be involved in 1,4-NTQ's mode(s) of action. Control treatments, consisting of nematodes exposed to Tween® 80 (1,4-NTQ solvent) and to water, were included in the analysis. A large set of differentially expressed genes (DEGs) was found among the three tested conditions, and a high number of downregulated genes were found between 1,4-NTQ treatment and water control, reflecting the inhibitory effect of this compound on M. luci, with a great impact on processes related to translation (ribosome pathway). Several other nematode gene networks and metabolic pathways affected by 1,4-NTQ were also identified, clarifying the possible mode of action of this promising bionematicide.

7.
Syst Appl Microbiol ; 46(2): 126404, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36868099

RESUMEN

The composition of the core lipids and intact polar lipids (IPLs) of five Rubrobacter species was examined. Methylated (ω-4) fatty acids (FAs) characterized the core lipids of Rubrobacter radiotolerans, R. xylanophilus and R. bracarensis. In contrast, R. calidifluminis and R. naiadicus lacked ω-4 methyl FAs but instead contained abundant (i.e., 34-41 % of the core lipids) ω-cyclohexyl FAs not reported before in the order Rubrobacterales. Their genomes contained an almost complete operon encoding proteins enabling production of cyclohexane carboxylic acid CoA thioester, which acts as a building block for ω-cyclohexyl FAs in other bacteria. Hence, the most plausible explanation for the biosynthesis of these cyclic FAs in R. calidifluminis and R. naiadicus is a recent acquisition of this operon. All strains contained 1-O-alkyl glycerol ether lipids in abundance (up to 46 % of the core lipids), in line with the dominance (>90 %) of mixed ether/ester IPLs with a variety of polar headgroups. The IPL head group distribution of R. calidifluminis and R. naiadicus differed, e.g. they lacked a novel IPL tentatively assigned as phosphothreoninol. The genomes of all five Rubrobacter species contained a putative operon encoding the synthesis of the 1-O-alkyl glycerol phosphate, the presumed building block of mixed ether/ester IPLs, which shows some resemblance with an operon enabling ether lipid production in various other aerobic bacteria but requires more study. The uncommon dominance of mixed ether/ester IPLs in Rubrobacter species exemplifies our recent growing awareness that the lipid divide between archaea and bacteria/eukaryotes is not as clear cut as previously thought.


Asunto(s)
Éter , Lípidos de la Membrana , Ésteres , Filogenia , ARN Ribosómico 16S , Bacterias/genética , Éteres , Ácidos Grasos , Éteres de Etila
8.
Lancet Oncol ; 24(1): 91-106, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436516

RESUMEN

BACKGROUND: Truncating pathogenic or likely pathogenic variants of CDH1 cause hereditary diffuse gastric cancer (HDGC), a tumour risk syndrome that predisposes carrier individuals to diffuse gastric and lobular breast cancer. Rare CDH1 missense variants are often classified as variants of unknown significance. We conducted a genotype-phenotype analysis in families carrying rare CDH1 variants, comparing cancer spectrum in carriers of pathogenic or likely pathogenic variants (PV/LPV; analysed jointly) or missense variants of unknown significance, assessing the frequency of families with lobular breast cancer among PV/LPV carrier families, and testing the performance of lobular breast cancer-expanded criteria for CDH1 testing. METHODS: This genotype-first study used retrospective diagnostic and clinical data from 854 carriers of 398 rare CDH1 variants and 1021 relatives, irrespective of HDGC clinical criteria, from 29 institutions in ten member-countries of the European Reference Network on Tumour Risk Syndromes (ERN GENTURIS). Data were collected from Oct 1, 2018, to Sept 20, 2022. Variants were classified by molecular type and clinical actionability with the American College of Medical Genetics and Association for Molecular Pathology CDH1 guidelines (version 2). Families were categorised by whether they fulfilled the 2015 and 2020 HDGC clinical criteria. Genotype-phenotype associations were analysed by Student's t test, Kruskal-Wallis, χ2, and multivariable logistic regression models. Performance of HDGC clinical criteria sets were assessed with an equivalence test and Youden index, and the areas under the receiver operating characteristic curves were compared by Z test. FINDINGS: From 1971 phenotypes (contributed by 854 probands and 1021 relatives aged 1-93 years), 460 had gastric and breast cancer histology available. CDH1 truncating PV/LPVs occurred in 176 (21%) of 854 families and missense variants of unknown significance in 169 (20%) families. Multivariable logistic regression comparing phenotypes occurring in families carrying PV/LPVs or missense variants of unknown significance showed that lobular breast cancer had the greatest positive association with the presence of PV/LPVs (odds ratio 12·39 [95% CI 2·66-57·74], p=0·0014), followed by diffuse gastric cancer (8·00 [2·18-29·39], p=0·0017) and gastric cancer (7·81 [2·03-29·96], p=0·0027). 136 (77%) of 176 families carrying PV/LPVs fulfilled the 2015 HDGC criteria. Of the remaining 40 (23%) families, who did not fulfil the 2015 criteria, 11 fulfilled the 2020 HDGC criteria, and 18 had lobular breast cancer only or lobular breast cancer and gastric cancer, but did not meet the 2020 criteria. No specific CDH1 variant was found to predispose individuals specifically to lobular breast cancer, although 12 (7%) of 176 PV/LPV carrier families had lobular breast cancer only. Addition of three new lobular breast cancer-centred criteria improved testing sensitivity while retaining high specificity. The probability of finding CDH1 PV/LPVs in patients fulfilling the lobular breast cancer-expanded criteria, compared with the 2020 criteria, increased significantly (AUC 0·92 vs 0·88; Z score 3·54; p=0·0004). INTERPRETATION: CDH1 PV/LPVs were positively associated with HDGC-related phenotypes (lobular breast cancer, diffuse gastric cancer, and gastric cancer), and no evidence for a positive association with these phenotypes was found for CDH1 missense variants of unknown significance. CDH1 PV/LPVs occurred often in families with lobular breast cancer who did not fulfil the 2020 HDGC criteria, supporting the expansion of lobular breast cancer-centred criteria. FUNDING: European Reference Network on Genetic Tumour Risk Syndromes, European Regional Development Fund, Fundação para a Ciência e a Tecnologia (Portugal), Cancer Research UK, and European Union's Horizon 2020 research and innovation programme.


Asunto(s)
Neoplasias de la Mama , Carcinoma Lobular , Neoplasias Gástricas , Femenino , Humanos , Antígenos CD/genética , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cadherinas/genética , Predisposición Genética a la Enfermedad , Genotipo , Células Germinativas/patología , Mutación de Línea Germinal , Linaje , Fenotipo , Estudios Retrospectivos , Neoplasias Gástricas/epidemiología , Neoplasias Gástricas/genética , Mutación Missense
9.
Biology (Basel) ; 11(7)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-36101418

RESUMEN

The PIN-FORMED (PIN) proteins represent the most important polar auxin transporters in plants. Here, we characterized the PIN gene family in two olive genotypes, the Olea europaea subsp. europaea var. sylvestris and the var. europaea (cv. 'Farga'). Twelve and 17 PIN genes were identified for vars. sylvestris and europaea, respectively, being distributed across 6 subfamilies. Genes encoding canonical OePINs consist of six exons, while genes encoding non-canonical OePINs are composed of five exons, with implications at protein specificities and functionality. A copia-LTR retrotransposon located in intron 4 of OePIN2b of var. europaea and the exaptation of partial sequences of that element as exons of the OePIN2b of var. sylvestris reveals such kind of event as a driving force in the olive PIN evolution. RNA-seq data showed that members from the subfamilies 1, 2, and 3 responded to abiotic and biotic stress factors. Co-expression of OePINs with genes involved in stress signaling and oxidative stress homeostasis were identified. This study highlights the importance of PIN genes on stress responses, contributing for a holistic understanding of the role of auxins in plants.

10.
AMB Express ; 12(1): 36, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35312889

RESUMEN

Most bacteria live in biofilms in their natural habitat rather than the planktonic cell stage that dominates during traditional laboratory cultivation and enrichment schemes. The present study describes the establishment of a flow-based enrichment method based on multispecies biofilm communities for directing biofilm functionality using an environmental inoculum. By controlling flow conditions and physio-chemical properties, the set-up aims to simulate natural conditions ex situ for biofilm formation. The functionality of the method was demonstrated by enrichment of biofilm microbiomes using consortia from a warm compost pile and industrial waste materials as growth substrate, and further exploring the metagenomes by biotechnological tools. The 16S rRNA gene sequencing results revealed a difference in consortium composition and especially in genus abundance, in flow experiments compared to traditional liquid-shake experiments after enrichment, indicating good biofilm development and increased abundance of biofilm-forming taxa. The shotgun sequence mining demonstrated that different enzymes classes can be targeted by enriching biofilms on different substrates such as oat husk, pine saw dust, and lignin. The flow-based biofilm method is effective in reducing bacterial consortia complexity and in selecting biofilm-forming bacteria, and it is possible to enrich the biofilm community in various directions based on the choice of sample material, environmental conditions, and nutritional preferences, targeting enzymes or enzyme classes of industrial interest.

11.
Mar Drugs ; 21(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36662207

RESUMEN

Marine microbiomes are prolific sources of bioactive natural products of potential pharmaceutical value. This study inspected two culture collections comprising 919 host-associated marine bacteria belonging to 55 genera and several thus-far unclassified lineages to identify isolates with potentially rich secondary metabolism and antimicrobial activities. Seventy representative isolates had their genomes mined for secondary metabolite biosynthetic gene clusters (SM-BGCs) and were screened for antimicrobial activities against four pathogenic bacteria and five pathogenic Candida strains. In total, 466 SM-BGCs were identified, with antimicrobial peptide- and polyketide synthase-related SM-BGCs being frequently detected. Only 38 SM-BGCs had similarities greater than 70% to SM-BGCs encoding known compounds, highlighting the potential biosynthetic novelty encoded by these genomes. Cross-streak assays showed that 33 of the 70 genome-sequenced isolates were active against at least one Candida species, while 44 isolates showed activity against at least one bacterial pathogen. Taxon-specific differences in antimicrobial activity among isolates suggested distinct molecules involved in antagonism against bacterial versus Candida pathogens. The here reported culture collections and genome-sequenced isolates constitute a valuable resource of understudied marine bacteria displaying antimicrobial activities and potential for the biosynthesis of novel secondary metabolites, holding promise for a future sustainable production of marine drug leads.


Asunto(s)
Antozoos , Antiinfecciosos , Poríferos , Animales , Humanos , Metabolismo Secundario/genética , Bacterias/metabolismo , Poríferos/genética , Familia de Multigenes , Candida , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Antozoos/genética , Filogenia
12.
Water Res ; 201: 117374, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34214892

RESUMEN

Ozonation is among the currently used technologies to remove chemical and biological contaminants from secondary treated urban wastewater (UWW). Despite its effectiveness on the abatement of organic micropollutants (OMPs) and disinfection, previous studies have shown that regrow of bacteria may occur upon storage of the ozonated UWW. This reactivation has been attributed to the high content of assimilable organic carbon after treatment. In order to investigate if ozonation by-products are the main biological regrowth drivers in stored ozonated UWW, the ozonation surviving cells were resuspended in sterile bottled mineral water (MW), simulating a pristine oligotrophic environment. After 7 days storage, organisms such as Acinetobacter, Methylobacterium, Cupriavidus, Massilia, Acidovorax and Pseudomonas were dominant in both ozonated UWW and pristine MW, demonstrating that bacterial regrowth is not strictly related to the eventual presence of ozonation by-products, but instead with the ability of the surviving cells to cope with nutrient-poor environments. The resistome of UWW before and after ozonation was analysed by metagenomic techniques. Draft metagenome assembled genomes (dMAGs), recovered from both ozonated UWW and after cell resuspension in MW, harboured genes conferring resistance to diverse antibiotics classes. Some of these antibiotic resistance genes (ARGs) were located in the vicinity of mobile genetic elements, suggesting their potential to be mobilized. Among these, dMAGs affiliated to taxa with high relative abundance in stored water, such as P. aeruginosa and Acinetobacter spp., harboured ARGs conferring resistance to 12 and 4 families of antibiotics, respectively, including those encoding carbapenem hydrolysing oxacillinases. The results herein obtained point out that the design and development of new wastewater treatment technologies should include measures to attenuate the imbalance of the bacterial communities promoted by storage of the final treated wastewater, even when applying processes with high mineralization rates.


Asunto(s)
Purificación del Agua , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana , Genes Bacterianos , Aguas Residuales
13.
Environ Microbiome ; 16(1): 3, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33902737

RESUMEN

BACKGROUND: Bacillus subtilis strains have been widely studied for their numerous benefits in agriculture, including viticulture. Providing several assets, B. subtilis spp. are described as promising plant-protectors against many pathogens and as influencers to adaptations in a changing environment. This study reports the draft genome sequence of the beneficial Bacillus subtilis PTA-271, isolated from the rhizospheric soil of healthy Vitis vinifera cv. Chardonnay at Champagne Region in France, attempting to draw outlines of its full biocontrol capacity. RESULTS: The PTA-271 genome has a size of 4,001,755 bp, with 43.78% of G + C content and 3945 protein coding genes. The draft genome of PTA-271 putatively highlights a functional swarming motility system hypothesizing a colonizing capacity and a strong interacting capacity, strong survival capacities and a set of genes encoding for bioactive substances. Predicted bioactive compounds are known to: stimulate plant growth or defenses such as hormones and elicitors, influence beneficial microbiota, and counteract pathogen aggressiveness such as effectors and many kinds of detoxifying enzymes. CONCLUSIONS: Plurality of the putatively encoded biomolecules by Bacillus subtilis PTA-271 genome suggests environmentally robust biocontrol potential of PTA-271, protecting plants against a broad spectrum of pathogens.

14.
Eur J Clin Invest ; 51(5): e13482, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33350459

RESUMEN

The concept of developmental origins of health and disease (DOHaD) was initially supported by the low birth weight and higher risk of developing cardiovascular disease in adult life, caused by nutrition restriction during foetal development. However, other programming windows have been recognized in the last years, namely lactation, infancy, adolescence and even preconception. Although the concept has been developed in order to study the impact of foetal calorie restriction in adult life, it is now recognized that maternal overweight during programming windows is also harmful to the offspring. This article explores and summarizes the current knowledge about the impact of maternal obesity and obesogenic diets during lactation in the metabolic programming towards the development of metabolic syndrome in the adult life. The impact of maternal obesity and obesogenic diets in milk quality is discussed, including the alterations in specific micro and macronutrients, as well as the impact of such alterations in the development of metabolic syndrome-associated features in the newborn, such as insulin resistance and adiposity. Moreover, the impact of milk quality and formula feeding in infants' gut microbiota, immune system maturation and in the nutrient-sensing mechanisms, namely those related to gut hormones and leptin, are also discussed under the current knowledge.


Asunto(s)
Lactancia Materna , Dieta , Microbioma Gastrointestinal , Síndrome Metabólico , Leche Humana , Obesidad Materna , Adiposidad , Alimentación con Biberón , Femenino , Humanos , Fórmulas Infantiles , Resistencia a la Insulina , Lactancia , Embarazo
16.
Invest Ophthalmol Vis Sci ; 61(12): 6, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33027505

RESUMEN

Purpose: Affecting children by age 3, primary congenital glaucoma (PCG) can cause debilitating vision loss by the developmental impairment of aqueous drainage resulting in high intraocular pressure (IOP), globe enlargement, and optic neuropathy. TEK haploinsufficiency accounts for 5% of PCG in diverse populations, with low penetrance explained by variable dysgenesis of Schlemm's canal (SC) in mice. We report eight families with TEK-related PCG, and provide evidence for SVEP1 as a disease modifier in family 8 with a higher penetrance and severity. Methods: Exome sequencing identified coding/splice site variants with an allele frequency less than 0.0001 (gnomAD). TEK variant effects were assayed in construct-transfected HEK293 cells via detection of autophosphorylated (active) TEK protein. An enucleated eye from an affected member of family 8 was examined via histology. SVEP1 expression in developing outflow tissues was detected by immunofluorescent staining of 7-day mouse anterior segments. SVEP1 stimulation of TEK expression in human umbilical vascular endothelial cells (HUVECs) was measured by TaqMan quantitative PCR. Results: Heterozygous TEK loss-of-function alleles were identified in eight PCG families, with parent-child disease transmission observed in two pedigrees. Family 8 exhibited greater disease penetrance and severity, histology revealed absence of SC in one eye, and SVEP1:p.R997C was identified in four of the five affected individuals. During SC development, SVEP1 is secreted by surrounding tissues. SVEP1:p.R997C abrogates stimulation of TEK expression by HUVECs. Conclusions: We provide further evidence for PCG caused by TEK haploinsufficiency, affirm autosomal dominant inheritance in two pedigrees, and propose SVEP1 as a modifier of TEK expression during SC development, affecting disease penetrance and severity.


Asunto(s)
Moléculas de Adhesión Celular/genética , Genes Modificadores/genética , Hidroftalmía/genética , Receptor TIE-2/genética , Anciano , Animales , Western Blotting , Preescolar , Femenino , Frecuencia de los Genes , Técnicas de Genotipaje , Células HEK293/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hidroftalmía/diagnóstico , Hidroftalmía/fisiopatología , Lactante , Recién Nacido , Presión Intraocular/fisiología , Masculino , Ratones , Persona de Mediana Edad , Mutación Missense , Linaje , Penetrancia , Fosforilación , Isoformas de Proteínas , Receptor TIE-2/metabolismo , Secuenciación del Exoma
17.
Int J Syst Evol Microbiol ; 70(3): 1596-1604, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32228748

RESUMEN

We performed high-quality genome sequencing of eight strains of the species of the genus Tepidimonas and examined the genomes of closely related strains from the databases to understand why Tepidimonas taiwanensis is the only strain of this genus that utilizes glucose and fructose for growth. We found that the assimilation of these hexoses by T. taiwanensis was due to the presence of two transporters that are absent in all other genomes of strains of members of the genus Tepidimonas examined. Some strains lack genes coding for glucokinase, but the Embden-Meyerhof-Parnas pathway appears to be otherwise complete. The pentose phosphate pathway has a complete set of genes, but genes of the Entner-Doudoroff pathway were not identified in the genomes of any of the strains examined. Genome analysis using average nucleotide identity (ANIb), digital DNA-DNA hybridization (dDDH), average amino acid identity (AAI) and phylogenetic analysis of 400 conserved genes was performed to assess the taxonomic classification of the organisms. Two isolates of the genus Tepidimonas from the hot spring at São Pedro do Sul, Portugal, designated SPSP-6T and SPSPC-18 were also examined in this study. These organisms are mixotrophic, have an optimum growth temperature of about 50 ºC, utilize several organic acids and amino acids for growth but do not grow on sugars. Distinctive phenotypic, 16S rRNA gene sequence and genomic characteristics of strains SPSP-6T and SPSPC-18 lead us to propose a novel species based on strain SPSP-6T for which we recommend the name Tepidimonas charontis sp. nov. (=CECT 9683T=LMG 30884T).


Asunto(s)
Burkholderiales/clasificación , Manantiales de Aguas Termales/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Burkholderiales/aislamiento & purificación , Hibridación Genómica Comparativa , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Portugal , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Agua
18.
Arch Toxicol ; 94(1): 257-271, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31768571

RESUMEN

Circadian rhythms disruption can be the cause of chronic diseases. External cues, including therapeutic drugs, have been shown to modulate peripheral-circadian clocks. Since anthracycline cardiotoxicity is associated with loss of mitochondrial function and metabolic remodeling, we investigated whether the energetic failure induced by sub-chronic doxorubicin (DOX) treatment in juvenile mice was associated with persistent disruption of circadian regulators. Juvenile C57BL/6J male mice were subjected to a sub-chronic DOX treatment (4 weekly injections of 5 mg/kg DOX) and several cardiac parameters, as well as circadian-gene expression and acetylation patterns, were analyzed after 6 weeks of recovery time. Complementary experiments were performed with Mouse Embryonic Fibroblasts (MEFs) and Human Embryonic Kidney 293 cells. DOX-treated juvenile mice showed cardiotoxicity markers and persistent alterations of transcriptional- and signaling cardiac circadian homeostasis. The results showed a delayed influence of DOX on gene expression, accompanied by changes in SIRT1-mediated cyclic deacetylation. The mechanism behind DOX interference with the circadian clock was further studied in vitro, in which were observed alterations of circadian-gene expression and increased BMAL1 SIRT1-mediated deacetylation. In conclusion, DOX treatment in juvenile mice resulted in disruption of oscillatory molecular mechanisms including gene expression and acetylation profiles.


Asunto(s)
Ritmo Circadiano/efectos de los fármacos , Doxorrubicina/efectos adversos , Cardiopatías/inducido químicamente , Acetilación/efectos de los fármacos , Animales , Antibióticos Antineoplásicos/efectos adversos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Regulación de la Expresión Génica/genética , Células HEK293 , Cardiopatías/fisiopatología , Homeostasis/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , Sirtuina 1/metabolismo , Sirtuinas/genética , Pruebas de Toxicidad Subcrónica
19.
BMC Genomics ; 20(1): 885, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31752666

RESUMEN

BACKGROUND: Microbial communities recurrently establish metabolic associations resulting in increased fitness and ability to perform complex tasks, such as xenobiotic degradation. In a previous study, we have described a sulfonamide-degrading consortium consisting of a novel low-abundant actinobacterium, named strain GP, and Achromobacter denitrificans PR1. However, we found that strain GP was unable to grow independently and could not be further purified. RESULTS: Previous studies suggested that strain GP might represent a new putative species within the Leucobacter genus (16S rRNA gene similarity < 97%). In this study, we found that average nucleotide identity (ANI) with other Leucobacter spp. ranged between 76.8 and 82.1%, further corroborating the affiliation of strain GP to a new provisional species. The average amino acid identity (AAI) and percentage of conserved genes (POCP) values were near the lower edge of the genus delimitation thresholds (65 and 55%, respectively). Phylogenetic analysis of core genes between strain GP and Leucobacter spp. corroborated these findings. Comparative genomic analysis indicates that strain GP may have lost genes related to tetrapyrrole biosynthesis and thiol transporters, both crucial for the correct assembly of cytochromes and aerobic growth. However, supplying exogenous heme and catalase was insufficient to abolish the dependent phenotype. The actinobacterium harbors at least two copies of a novel genetic element containing a sulfonamide monooxygenase (sadA) flanked by a single IS1380 family transposase. Additionally, two homologs of sadB (4-aminophenol monooxygenase) were identified in the metagenome-assembled draft genome of strain GP, but these were not located in the vicinity of sadA nor of mobile or integrative elements. CONCLUSIONS: Comparative genomics of the genus Leucobacter suggested the absence of some genes encoding for important metabolic traits in strain GP. Nevertheless, although media and culture conditions were tailored to supply its potential metabolic needs, these conditions were insufficient to isolate the PR1-dependent actinobacterium further. This study gives important insights regarding strain GP metabolism; however, gene expression and functional studies are necessary to characterize and further isolate strain GP. Based on our data, we propose to classify strain GP in a provisional new species within the genus Leucobacter, 'Candidatus Leucobacter sulfamidivorax'.


Asunto(s)
Actinobacteria/clasificación , Actinomycetales/clasificación , Actinobacteria/genética , Actinobacteria/metabolismo , Actinomycetales/genética , Genes Bacterianos , Genoma Bacteriano , Genómica , Secuencias Repetitivas Esparcidas , Metagenoma , Consorcios Microbianos , Oxigenasas de Función Mixta/genética , Filogenia , Sulfonamidas/metabolismo , Sintenía
20.
Microbiologyopen ; 8(9): e00840, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30977302

RESUMEN

Gaiella occulta strain F2-233T (=CECT 7815 = LMG 26412), isolated from a 150 meter deep mineral water aquifer, was deemed a candidate for high-quality draft genome sequencing because of the rare environment from which it was isolated. The draft genome sequence (QQZY00000000) of strain F2-233T is composed of approximately 3 Mb, predicted 3,119 protein-coding genes of which 2,545 were assigned putative functions. Genome analysis was done by comparison with the other deep-branching Actinobacteria neighbors Rubrobacter radiotolerans, Solirubrobacter soli and Thermoleophilum album. The genes for the tricarboxylic acid cycle, gluconeogenesis and pentose phosphate pathway, were identified in G. occulta, R. radiotolerans, S. soli and T. album genomes. Genes of the Embden-Meyerhof-Parnas pathway and nitrate reduction were identified in G. occulta, R. radiotolerans and S. soli, but not in the T. album genome. Alkane degradation is precluded by genome analysis in G. occulta. Genes involved in myo-inositol metabolism were found in both S. soli and G. occulta genomes. A Calvin-Benson-Bassham (CBB) cycle with a type I RuBisCO was identified in G. occulta genome, as well. However, experimental growth under several conditions was negative and CO2 fixation could not be proven in G. occulta.


Asunto(s)
Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Genoma Bacteriano , Aguas Minerales/microbiología , Análisis de Secuencia de ADN , Redes y Vías Metabólicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...