Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytopathology ; 114(1): 241-250, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37432099

RESUMEN

Xanthomonas perforans-the dominant causal agent of bacterial leaf spot of tomato-is an emerging pathogen of pepper, indicative of a potential host expansion across the southeastern United States. However, studies of the genetic diversity and evolution of X. perforans from pepper remain limited. In this study, the whole-genome sequences of 35 X. perforans strains isolated from pepper from four fields and two transplant facilities across southwest Florida between 2019 and 2021 were used to compare genomic divergence, evolution, and variation in type III secreted effectors. Phylogenetic analysis based on core genes revealed that all 35 X. perforans strains formed one genetic cluster with pepper and tomato strains from Alabama and Turkey and were closely related to strains isolated from tomato in Indiana, Mexico, and Louisiana. The in planta population growth of tomato strains isolated from Indiana, Mexico, Louisiana, and Turkey in pepper leaf mesophyll was on par with pepper X. perforans and X. euvesicatoria strains. Molecular clock analysis of the 35 Florida strains dated their emergence to approximately 2017. While strains varied in copper tolerance, all sequenced strains harbored the avrHah1 transcription activation-like effector located on a conjugative plasmid, not previously reported in Florida. Our findings suggest that there is a geographically distributed lineage of X. perforans strains on tomato that has the genetic background to cause disease on pepper. Moreover, this study clarifies potential adaptive variants of X. perforans on pepper that could help forecast the emergence of such strains and enable immediate or preemptive intervention.


Asunto(s)
Metagenómica , Xanthomonas , Filogenia , Enfermedades de las Plantas/microbiología , Genómica , Xanthomonas/genética
2.
Front Microbiol ; 11: 604566, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33391227

RESUMEN

Crop domestication events followed by targeted breeding practices have been pivotal for improvement of desirable traits and to adapt cultivars to local environments. Domestication also resulted in a strong reduction in genetic diversity among modern cultivars compared to their wild relatives, though the effect this could have on tripartite relationships between plants, belowground beneficial microbes and aboveground pathogens remains undetermined. We quantified plant growth performance, basal resistance and induced systemic resistance (ISR) by Trichoderma harzianum, a beneficial soil microbe against Botrytis cinerea, a necrotrophic fungus and Phytophthora infestans, a hemi-biotrophic oomycete, in 25 diverse tomato genotypes. Wild tomato related species, tomato landraces and modern commercial cultivars that were conventionally or organically bred, together, representing a domestication gradient were evaluated. Relationships between basal and ISR, plant physiological status and phenolic compounds were quantified to identify potential mechanisms. Trichoderma enhanced shoot and root biomass and ISR to both pathogens in a genotype specific manner. Moreover, improvements in plant performance in response to Trichoderma gradually decreased along the domestication gradient. Wild relatives and landraces were more responsive to Trichoderma, resulting in greater suppression of foliar pathogens than modern cultivars. Photosynthetic rate and stomatal conductance of some tomato genotypes were improved by Trichoderma treatment whereas leaf nitrogen status of the majority of tomato genotypes were not altered. There was a negative relationship between basal resistance and induced resistance for both diseases, and a positive correlation between Trichoderma-ISR to B. cinerea and enhanced total flavonoid contents. These findings suggest that domestication and breeding practices have altered plant responsiveness to beneficial soil microbes. Further studies are needed to decipher the molecular mechanisms underlying the differential promotion of plant growth and resistance among genotypes, and identify molecular markers to integrate selection for responsiveness into future breeding programs.

3.
Plant Dis ; 85(10): 1081-1084, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30823280

RESUMEN

Methods of fungicide application were evaluated for their influence on the chemical control of Alternaria leaf blight of muskmelon in 1997, 1998, and 1999. Chlorothalonil was applied through either flat-fan or hollow-cone nozzles and with spray pressures ranging from 207 to 1,034 kPa. In all 3 years, unsprayed controls had significantly more disease than any of the sprayed treatments. There was no significant effect of nozzle type on disease severity or yield in any year. Spray pressures of 207, 414, or 620 kPa did not significantly affect disease severity or yield in 1997. In 1998, the 827-kPa pressure significantly lowered disease severity compared with the 207-kPa and 414-kPa pressures, but a similar decrease in the number of lesions per leaf did not occur. Yield responses in 1998 did not support a relationship between spray pressures and disease control. In 1999, spray pressure of 1,034 kPa did not significantly decrease the area under the disease progress curve as estimated from weekly ratings of the disease severity ratings or counts of lesions per leaf made on two dates. Results indicate no differences in disease control due to any of the application methods examined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...