Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gigascience ; 132024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38837942

RESUMEN

BACKGROUND: RNA-RNA interactions are key to a wide range of cellular functions. The detection of potential interactions helps to understand the underlying processes. However, potential interactions identified via in silico or experimental high-throughput methods can lack precision because of a high false-positive rate. RESULTS: We present CheRRI, the first tool to evaluate the biological relevance of putative RNA-RNA interaction sites. CheRRI filters candidates via a machine learning-based model trained on experimental RNA-RNA interactome data. Its unique setup combines interactome data and an established thermodynamic prediction tool to integrate experimental data with state-of-the-art computational models. Applying these data to an automated machine learning approach provides the opportunity to not only filter data for potential false positives but also tailor the underlying interaction site model to specific needs. CONCLUSIONS: CheRRI is a stand-alone postprocessing tool to filter either predicted or experimentally identified potential RNA-RNA interactions on a genomic level to enhance the quality of interaction candidates. It is easy to install (via conda, pip packages), use (via Galaxy), and integrate into existing RNA-RNA interaction pipelines.


Asunto(s)
Biología Computacional , Aprendizaje Automático , ARN , Programas Informáticos , ARN/metabolismo , Biología Computacional/métodos , Sitios de Unión , Humanos
2.
Methods Mol Biol ; 2726: 255-284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38780735

RESUMEN

Effective homology search for non-coding RNAs is frequently not possible via sequence similarity alone. Current methods leverage evolutionary information like structure conservation or covariance scores to identify homologs in organisms that are phylogenetically more distant. In this chapter, we introduce the theoretical background of evolutionary structure conservation and covariance score, and we show hands-on how current methods in the field are applied on example datasets.


Asunto(s)
Biología Computacional , Evolución Molecular , Biología Computacional/métodos , Filogenia , Algoritmos , ARN no Traducido/genética , Secuencia Conservada , Humanos , Animales , Programas Informáticos , Alineación de Secuencia/métodos
3.
Microlife ; 4: uqad001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223747

RESUMEN

In contrast to extensively studied prokaryotic 'small' transcriptomes (encompassing all small noncoding RNAs), small proteomes (here defined as including proteins ≤70 aa) are only now entering the limelight. The absence of a complete small protein catalogue in most prokaryotes precludes our understanding of how these molecules affect physiology. So far, archaeal genomes have not yet been analyzed broadly with a dedicated focus on small proteins. Here, we present a combinatorial approach, integrating experimental data from small protein-optimized mass spectrometry (MS) and ribosome profiling (Ribo-seq), to generate a high confidence inventory of small proteins in the model archaeon Haloferax volcanii. We demonstrate by MS and Ribo-seq that 67% of the 317 annotated small open reading frames (sORFs) are translated under standard growth conditions. Furthermore, annotation-independent analysis of Ribo-seq data showed ribosomal engagement for 47 novel sORFs in intergenic regions. A total of seven of these were also detected by proteomics, in addition to an eighth novel small protein solely identified by MS. We also provide independent experimental evidence in vivo for the translation of 12 sORFs (annotated and novel) using epitope tagging and western blotting, underlining the validity of our identification scheme. Several novel sORFs are conserved in Haloferax species and might have important functions. Based on our findings, we conclude that the small proteome of H. volcanii is larger than previously appreciated, and that combining MS with Ribo-seq is a powerful approach for the discovery of novel small protein coding genes in archaea.

4.
Sci Adv ; 8(39): eabo5578, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36170367

RESUMEN

RNA binding proteins and messenger RNAs (mRNAs) assemble into ribonucleoprotein granules that regulate mRNA trafficking, local translation, and turnover. The dysregulation of RNA-protein condensation disturbs synaptic plasticity and neuron survival and has been widely associated with human neurological disease. Neuronal granules are thought to condense around particular proteins that dictate the identity and composition of each granule type. Here, we show in Drosophila that a previously uncharacterized long noncoding RNA, mimi, is required to scaffold large neuronal granules in the adult nervous system. Neuronal ELAV-like proteins directly bind mimi and mediate granule assembly, while Staufen maintains condensate integrity. mimi granules contain mRNAs and proteins involved in synaptic processes; granule loss in mimi mutant flies impairs nervous system maturity and neuropeptide-mediated signaling and causes phenotypes of neurodegeneration. Our work reports an architectural RNA for a neuronal granule and provides a handle to interrogate functions of a condensate independently of those of its constituent proteins.


Asunto(s)
Neuropéptidos , ARN Largo no Codificante , Gránulos de Ribonucleoproteínas Citoplasmáticas , Humanos , Neuronas/fisiología , Neuropéptidos/metabolismo , ARN/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
5.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35037022

RESUMEN

Small proteins encoded by short open reading frames (ORFs) with 50 codons or fewer are emerging as an important class of cellular macromolecules in diverse organisms. However, they often evade detection by proteomics or in silico methods. Ribosome profiling (Ribo-seq) has revealed widespread translation in genomic regions previously thought to be non-coding, driving the development of ORF detection tools using Ribo-seq data. However, only a handful of tools have been designed for bacteria, and these have not yet been systematically compared. Here, we aimed to identify tools that use Ribo-seq data to correctly determine the translational status of annotated bacterial ORFs and also discover novel translated regions with high sensitivity. To this end, we generated a large set of annotated ORFs from four diverse bacterial organisms, manually labeled for their translation status based on Ribo-seq data, which are available for future benchmarking studies. This set was used to investigate the predictive performance of seven Ribo-seq-based ORF detection tools (REPARATION_blast, DeepRibo, Ribo-TISH, PRICE, smORFer, ribotricer and SPECtre), as well as IRSOM, which uses coding potential and RNA-seq coverage only. DeepRibo and REPARATION_blast robustly predicted translated ORFs, including sORFs, with no significant difference for ORFs in close proximity to other genes versus stand-alone genes. However, no tool predicted a set of novel, experimentally verified sORFs with high sensitivity. Start codon predictions with smORFer show the value of initiation site profiling data to further improve the sensitivity of ORF prediction tools in bacteria. Overall, we find that bacterial tools perform well for sORF detection, although there is potential for improving their performance, applicability, usability and reproducibility.


Asunto(s)
Benchmarking , Ribosomas , Bacterias/genética , Sistemas de Lectura Abierta , Reproducibilidad de los Resultados , Ribosomas/genética , Ribosomas/metabolismo
6.
Bioinformatics ; 38(4): 1139-1140, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34734974

RESUMEN

MOTIVATION: CLIP-seq is by far the most widely used method to determine transcriptome-wide binding sites of RNA-binding proteins (RBPs). The binding site locations are identified from CLIP-seq read data by tools termed peak callers. Many RBPs bind to a spliced RNA (i.e. transcript) context, but all currently available peak callers only consider and report the genomic context. To accurately model protein binding behavior, a tool is needed for the individual context assignment to CLIP-seq peak regions. RESULTS: Here we present Peakhood, the first tool that utilizes CLIP-seq peak regions identified by peak callers, in tandem with CLIP-seq read information and genomic annotations, to determine which context applies, individually for each peak region. For sites assigned to transcript context, it further determines the most likely splice variant, and merges results for any number of datasets to obtain a comprehensive collection of transcript context binding sites. AVAILABILITY AND IMPLEMENTATION: Peakhood is freely available under MIT license at: https://github.com/BackofenLab/Peakhood. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Programas Informáticos , ARN/metabolismo , Sitios de Unión , Genómica , Análisis de Secuencia de ARN/métodos
7.
Nucleic Acids Res ; 49(W1): W125-W130, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34133710

RESUMEN

CRISPR-Cas systems are adaptive immune systems in prokaryotes, providing resistance against invading viruses and plasmids. The identification of CRISPR loci is currently a non-standardized, ambiguous process, requiring the manual combination of multiple tools, where existing tools detect only parts of the CRISPR-systems, and lack quality control, annotation and assessment capabilities of the detected CRISPR loci. Our CRISPRloci server provides the first resource for the prediction and assessment of all possible CRISPR loci. The server integrates a series of advanced Machine Learning tools within a seamless web interface featuring: (i) prediction of all CRISPR arrays in the correct orientation; (ii) definition of CRISPR leaders for each locus; and (iii) annotation of cas genes and their unambiguous classification. As a result, CRISPRloci is able to accurately determine the CRISPR array and associated information, such as: the Cas subtypes; cassette boundaries; accuracy of the repeat structure, orientation and leader sequence; virus-host interactions; self-targeting; as well as the annotation of cas genes, all of which have been missing from existing tools. This annotation is presented in an interactive interface, making it easy for scientists to gain an overview of the CRISPR system in their organism of interest. Predictions are also rendered in GFF format, enabling in-depth genome browser inspection. In summary, CRISPRloci constitutes a full suite for CRISPR-Cas system characterization that offers annotation quality previously available only after manual inspection.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Anotación de Secuencia Molecular , Programas Informáticos , Proteínas Asociadas a CRISPR/clasificación , Proteínas Asociadas a CRISPR/genética , Aprendizaje Automático
8.
Bioinformatics ; 37(14): 2061-2063, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-33175953

RESUMEN

MOTIVATION: Ribosome profiling (Ribo-seq) is a powerful approach based on deep sequencing of cDNA libraries generated from ribosome-protected RNA fragments to explore the translatome of a cell, and is especially useful for the detection of small proteins (50-100 amino acids) that are recalcitrant to many standard biochemical and in silico approaches. While pipelines are available to analyze Ribo-seq data, none are designed explicitly for the automatic processing and analysis of data from bacteria, nor are they focused on the discovery of unannotated open reading frames (ORFs). RESULTS: We present HRIBO (High-throughput annotation by Ribo-seq), a workflow to enable reproducible and high-throughput analysis of bacterial Ribo-seq data. The workflow performs all required pre-processing and quality control steps. Importantly, HRIBO outputs annotation-independent ORF predictions based on two complementary bacteria-focused tools, and integrates them with additional feature information and expression values. This facilitates the rapid and high-confidence discovery of novel ORFs and their prioritization for functional characterization. AVAILABILITY AND IMPLEMENTATION: HRIBO is a free and open source project available under the GPL-3 license at: https://github.com/RickGelhausen/HRIBO.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Animales , Bacterias/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Caballos , Sistemas de Lectura Abierta , ARN Ribosómico , Ribosomas/genética , Ribosomas/metabolismo
9.
Microlife ; 1(1): uqaa002, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-37223003

RESUMEN

Small proteins are an emerging class of gene products with diverse roles in bacterial physiology. However, a full understanding of their importance has been hampered by insufficient genome annotations and a lack of comprehensive characterization in microbes other than Escherichia coli. We have taken an integrative approach to accelerate the discovery of small proteins and their putative virulence-associated functions in Salmonella Typhimurium. We merged the annotated small proteome of Salmonella with new small proteins predicted with in silico and experimental approaches. We then exploited existing and newly generated global datasets that provide information on small open reading frame expression during infection of epithelial cells (dual RNA-seq), contribution to bacterial fitness inside macrophages (Transposon-directed insertion sequencing), and potential engagement in molecular interactions (Grad-seq). This integrative approach suggested a new role for the small protein MgrB beyond its known function in regulating PhoQ. We demonstrate a virulence and motility defect of a Salmonella ΔmgrB mutant and reveal an effect of MgrB in regulating the Salmonella transcriptome and proteome under infection-relevant conditions. Our study highlights the power of interpreting available 'omics' datasets with a focus on small proteins, and may serve as a blueprint for a data integration-based survey of small proteins in diverse bacteria.

10.
PLoS One ; 14(9): e0222459, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31513641

RESUMEN

Ribosome profiling (ribo-seq) provides a means to analyze active translation by determining ribosome occupancy in a transcriptome-wide manner. The vast majority of ribosome protected fragments (RPFs) resides within the protein-coding sequence of mRNAs. However, commonly reads are also found within the transcript leader sequence (TLS) (aka 5' untranslated region) preceding the main open reading frame (ORF), indicating the translation of regulatory upstream ORFs (uORFs). Here, we present a workflow for the identification of translation-regulatory uORFs. Specifically, uORF-Tools uses Ribo-TISH to identify uORFs within a given dataset and generates a uORF annotation file. In addition, a comprehensive human uORF annotation file, based on 35 ribo-seq files, is provided, which can serve as an alternative input file for the workflow. To assess the translation-regulatory activity of the uORFs, stimulus-induced changes in the ratio of the RPFs residing in the main ORFs relative to those found in the associated uORFs are determined. The resulting output file allows for the easy identification of candidate uORFs, which have translation-inhibitory effects on their associated main ORFs. uORF-Tools is available as a free and open Snakemake workflow at https://github.com/Biochemistry1-FFM/uORF-Tools. It is easily installed and all necessary tools are provided in a version-controlled manner, which also ensures lasting usability. uORF-Tools is designed for intuitive use and requires only limited computing times and resources.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Sistemas de Lectura Abierta/genética , Ribosomas/genética , Regiones no Traducidas 5' , Regulación de la Expresión Génica , Humanos , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , ARN Mensajero , Programas Informáticos , Flujo de Trabajo
11.
Nucleic Acids Res ; 47(W1): W511-W515, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31073612

RESUMEN

RNA has become one of the major research topics in molecular biology. As a central player in key processes regulating gene expression, RNA is in the focus of many efforts to decipher the pathways that govern the transition of genetic information to a fully functional cell. As more and more researchers join this endeavour, there is a rapidly growing demand for comprehensive collections of tools that cover the diverse layers of RNA-related research. However, increasing amounts of data, from diverse types of experiments, addressing different aspects of biological questions need to be consolidated and integrated into a single framework. Only then is it possible to connect findings from e.g. RNA-Seq experiments and methods for e.g. target predictions. To address these needs, we present the RNA Workbench 2.0 , an updated online resource for RNA related analysis. With the RNA Workbench we created a comprehensive set of analysis tools and workflows that enables researchers to analyze their data without the need for sophisticated command-line skills. This update takes the established framework to the next level, providing not only a containerized infrastructure for analysis, but also a ready-to-use platform for hands-on training, analysis, data exploration, and visualization. The new framework is available at https://rna.usegalaxy.eu , and login is free and open to all users. The containerized version can be found at https://github.com/bgruening/galaxy-rna-workbench.


Asunto(s)
ARN/química , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN
12.
Nucleic Acids Res ; 46(W1): W25-W29, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29788132

RESUMEN

The Freiburg RNA tools webserver is a well established online resource for RNA-focused research. It provides a unified user interface and comprehensive result visualization for efficient command line tools. The webserver includes RNA-RNA interaction prediction (IntaRNA, CopraRNA, metaMIR), sRNA homology search (GLASSgo), sequence-structure alignments (LocARNA, MARNA, CARNA, ExpaRNA), CRISPR repeat classification (CRISPRmap), sequence design (antaRNA, INFO-RNA, SECISDesign), structure aberration evaluation of point mutations (RaSE), and RNA/protein-family models visualization (CMV), and other methods. Open education resources offer interactive visualizations of RNA structure and RNA-RNA interaction prediction as well as basic and advanced sequence alignment algorithms. The services are freely available at http://rna.informatik.uni-freiburg.de.


Asunto(s)
Secuencia de Bases/genética , Internet , ARN/genética , Programas Informáticos , Algoritmos , Conformación de Ácido Nucleico , ARN/química , Alineación de Secuencia/instrumentación , Análisis de Secuencia de ARN/instrumentación , Relación Estructura-Actividad
13.
Bioinformatics ; 34(15): 2676-2678, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29554223

RESUMEN

Summary: A standard method for the identification of novel RNAs or proteins is homology search via probabilistic models. One approach relies on the definition of families, which can be encoded as covariance models (CMs) or Hidden Markov Models (HMMs). While being powerful tools, their complexity makes it tedious to investigate them in their (default) tabulated form. This specifically applies to the interpretation of comparisons between multiple models as in family clans. The Covariance model visualization tools (CMV) visualize CMs or HMMs to: I) Obtain an easily interpretable representation of HMMs and CMs; II) Put them in context with the structural sequence alignments they have been created from; III) Investigate results of model comparisons and highlight regions of interest. Availability and implementation: Source code (http://www.github.com/eggzilla/cmv), web-service (http://rna.informatik.uni-freiburg.de/CMVS). Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Conformación de Ácido Nucleico , Conformación Proteica , Alineación de Secuencia/métodos , Análisis de Secuencia de Proteína/métodos , Análisis de Secuencia de ARN/métodos , Programas Informáticos , ARN/química , ARN/metabolismo
14.
Nucleic Acids Res ; 45(W1): W560-W566, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28582575

RESUMEN

RNA-based regulation has become a major research topic in molecular biology. The analysis of epigenetic and expression data is therefore incomplete if RNA-based regulation is not taken into account. Thus, it is increasingly important but not yet standard to combine RNA-centric data and analysis tools with other types of experimental data such as RNA-seq or ChIP-seq. Here, we present the RNA workbench, a comprehensive set of analysis tools and consolidated workflows that enable the researcher to combine these two worlds. Based on the Galaxy framework the workbench guarantees simple access, easy extension, flexible adaption to personal and security needs, and sophisticated analyses that are independent of command-line knowledge. Currently, it includes more than 50 bioinformatics tools that are dedicated to different research areas of RNA biology including RNA structure analysis, RNA alignment, RNA annotation, RNA-protein interaction, ribosome profiling, RNA-seq analysis and RNA target prediction. The workbench is developed and maintained by experts in RNA bioinformatics and the Galaxy framework. Together with the growing community evolving around this workbench, we are committed to keep the workbench up-to-date for future standards and needs, providing researchers with a reliable and robust framework for RNA data analysis. AVAILABILITY: The RNA workbench is available at https://github.com/bgruening/galaxy-rna-workbench.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN/química , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Biología Computacional , Internet , Conformación de Ácido Nucleico , ARN/metabolismo , ARN no Traducido/química , Flujo de Trabajo
16.
Sci Rep ; 6: 34589, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27713552

RESUMEN

The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result in a severe and often fatal infection in humans. However, bats are natural hosts and survive filovirus infections without obvious symptoms. The molecular basis of this striking difference in the response to filovirus infections is not well understood. We report a systematic overview of differentially expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine ligands and transcription factors. We observed a strong induction of the JAK/STAT pathway, of several genes encoding inhibitors of MAP kinases (DUSP genes) and of PPP1R15A, which is involved in ER stress-induced cell death. We used comparative transcriptomics to provide a data resource that can be used to identify cellular responses that might allow bats to survive filovirus infections.


Asunto(s)
Ebolavirus/metabolismo , Regulación de la Expresión Génica , Fiebre Hemorrágica Ebola/metabolismo , Enfermedad del Virus de Marburg/metabolismo , Marburgvirus/metabolismo , Transducción de Señal , Transcripción Genética , Animales , Línea Celular Tumoral , Quirópteros , Humanos
17.
Nucleic Acids Res ; 44(17): 8433-41, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27330139

RESUMEN

Determining the function of a non-coding RNA requires costly and time-consuming wet-lab experiments. For this reason, computational methods which ascertain the homology of a sequence and thereby deduce functionality and family membership are often exploited. In this fashion, newly sequenced genomes can be annotated in a completely computational way. Covariance models are commonly used to assign novel RNA sequences to a known RNA family. However, to construct such models several examples of the family have to be already known. Moreover, model building is the work of experts who manually edit the necessary RNA alignment and consensus structure. Our method, RNAlien, starting from a single input sequence collects potential family member sequences by multiple iterations of homology search. RNA family models are fully automatically constructed for the found sequences. We have tested our method on a subset of the Rfam RNA family database. RNAlien models are a starting point to construct models of comparable sensitivity and specificity to manually curated ones from the Rfam database. RNAlien Tool and web server are available at http://rna.tbi.univie.ac.at/rnalien/.


Asunto(s)
Algoritmos , Modelos Moleculares , ARN/química , Emparejamiento Base , Humanos , Conformación de Ácido Nucleico , Homología de Secuencia de Ácido Nucleico , Factores de Tiempo
18.
F1000Res ; 4: 50, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26236465

RESUMEN

Recent achievements in next-generation sequencing (NGS) technologies lead to a high demand for reuseable software components to easily compile customized analysis workflows for big genomics data. We present ViennaNGS, an integrated collection of Perl modules focused on building efficient pipelines for NGS data processing. It comes with functionality for extracting and converting features from common NGS file formats, computation and evaluation of read mapping statistics, as well as normalization of RNA abundance. Moreover, ViennaNGS provides software components for identification and characterization of splice junctions from RNA-seq data, parsing and condensing sequence motif data, automated construction of Assembly and Track Hubs for the UCSC genome browser, as well as wrapper routines for a set of commonly used NGS command line tools.

19.
Nucleic Acids Res ; 41(Web Server issue): W499-503, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23640335

RESUMEN

A standard method for the identification of novel non-coding RNAs is homology search by covariance models. Covariance models are constructed for specific RNA families with common sequence and structure (e.g. transfer RNAs). Currently, there are models for 2208 families available from Rfam. Before being included into a database, a proposed family should be tested for specificity (finding only true homolog sequences), sensitivity (finding remote homologs) and uniqueness. The CMCompare webserver (CMCws) compares Infernal RNA family models to (i) identify models with poor specificity and (ii) explore the relationship between models. The CMCws provides options to compare new models against all existing models in the current Rfam database to avoid the construction of duplicate models for the same non-coding RNA family. In addition, the user can explore the relationship between two or more models, including whole sets of user-created family models. Visualization of family relationships provides help in evaluating candidates for clusters of biologically related families, called clans. The CMCws is freely available, without any login requirements, at http://rna.tbi.univie.ac.at/cmcws, and the underlying software is available under the GPL-3 license.


Asunto(s)
Modelos Estadísticos , ARN no Traducido/química , Homología de Secuencia de Ácido Nucleico , Programas Informáticos , Internet , ARN de Transferencia/química , ARN de Transferencia/clasificación , ARN no Traducido/clasificación
20.
Nucleic Acids Res ; 39(Web Server issue): W149-54, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21672960

RESUMEN

Bacterial genomes encode a plethora of small RNAs (sRNAs), which are heterogeneous in size, structure and function. Most sRNAs act as post-transcriptional regulators by means of specific base pairing interactions with the 5'-untranslated region of mRNA transcripts, thereby modifying the stability of the target transcript and/or its ability to be translated. Here, we present RNApredator, a web server for the prediction of sRNA targets. The user can choose from a set of over 2155 genomes and plasmids from 1183 bacterial species. RNApredator then uses a dynamic programming approach, RNAplex, to compute putative targets. Compared to web servers with a similar task, RNApredator takes the accessibility of the target during the target search into account, improving the specificity of the predictions. Furthermore, enrichment in Gene Ontology terms, cellular pathways as well as changes in accessibilities along the target sequence can be done in fully automated post-processing steps. The predictive performance of the underlying dynamic programming approach RNAplex is similar to that of more complex methods, but needs at least three orders of magnitude less time to complete. RNApredator is available at http://rna.tbi.univie.ac.at/RNApredator.


Asunto(s)
ARN Bacteriano/química , ARN Pequeño no Traducido/química , Programas Informáticos , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA