Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 3(5): pgae174, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711810

RESUMEN

Although evidence indicates that the adult brain retains a considerable capacity for circuit formation, adult wiring has not been broadly considered and remains poorly understood. In this study, we investigate wiring activation in adult neurons. We show that the basic-helix-loop-helix transcription factor Ascl4 can induce wiring in different types of hippocampal neurons of adult mice. The new axons are mainly feedforward and reconfigure synaptic weights in the circuit. Mice with the Ascl4-induced circuits do not display signs of pathology and solve spatial problems equally well as controls. Our results demonstrate reprogrammed connectivity by a single transcriptional factor and provide insights into the regulation of brain wiring in adults.

2.
J Cereb Blood Flow Metab ; : 271678X231216270, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38000040

RESUMEN

Nogo-A is a transmembrane protein with multiple functions in the central nervous system (CNS), including restriction of neurite growth and synaptic plasticity. Thus far, Nogo-A has been predominantly considered a cell contact-dependent ligand signaling via cell surface receptors. Here, we show that Nogo-A can be secreted by cultured cells of neuronal and glial origin in association with extracellular vesicles (EVs). Neuron- and oligodendrocyte-derived Nogo-A containing EVs inhibited fibroblast spreading, and this effect was partially reversed by Nogo-A receptor S1PR2 blockage. EVs purified from HEK cells only inhibited fibroblast spreading upon Nogo-A over-expression. Nogo-A-containing EVs were found in vivo in the blood of healthy mice and rats, as well as in human plasma. Blood Nogo-A concentrations were elevated after acute stroke lesions in mice and rats. Nogo-A active peptides decreased barrier integrity in an in vitro blood-brain barrier model. Stroked mice showed increased dye permeability in peripheral organs when tested 2 weeks after injury. In the Miles assay, an in vivo test to assess leakage of the skin vasculature, a Nogo-A active peptide increased dye permeability. These findings suggest that blood borne, possibly EV-associated Nogo-A could exert long-range regulatory actions on vascular permeability.

3.
PNAS Nexus ; 2(4): pgad088, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37077887

RESUMEN

Dentate granule cells (GCs) have been characterized as unilaterally projecting neurons within each hippocampus. Here, we describe a unique class, the commissural GCs, which atypically project to the contralateral hippocampus in mice. Although commissural GCs are rare in the healthy brain, their number and contralateral axon density rapidly increase in a rodent model of temporal lobe epilepsies. In this model, commissural GC axon growth appears together with the well-studied hippocampal mossy fiber sprouting and may be important for the pathomechanisms of epilepsy. Our results augment the current view on hippocampal GC diversity and demonstrate powerful activation of a commissural wiring program in the adult brain.

4.
Front Neurosci ; 16: 888362, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117624

RESUMEN

Circuit formation is a defining characteristic of the developing brain. However, multiple lines of evidence suggest that circuit formation can also take place in adults, the mechanisms of which remain poorly understood. Here, we investigated the epilepsy-associated mossy fiber (MF) sprouting in the adult hippocampus and asked which cell surface molecules define its target specificity. Using single-cell RNAseq data, we found lack and expression of Pcdh11x in non-sprouting and sprouting neurons respectively. Subsequently, we used CRISPR/Cas9 genome editing to disrupt the Pcdh11x gene and characterized its consequences on sprouting. Although MF sprouting still developed, its target specificity was altered. New synapses were frequently formed on granule cell somata in addition to dendrites. Our findings shed light onto a key molecular determinant of target specificity in MF sprouting and contribute to understanding the molecular mechanism of adult brain rewiring.

5.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34599103

RESUMEN

Circuit formation in the central nervous system has been historically studied during development, after which cell-autonomous and nonautonomous wiring factors inactivate. In principle, balanced reactivation of such factors could enable further wiring in adults, but their relative contributions may be circuit dependent and are largely unknown. Here, we investigated hippocampal mossy fiber sprouting to gain insight into wiring mechanisms in mature circuits. We found that sole ectopic expression of Id2 in granule cells is capable of driving mossy fiber sprouting in healthy adult mouse and rat. Mice with the new mossy fiber circuit solved spatial problems equally well as controls but appeared to rely on local rather than global spatial cues. Our results demonstrate reprogrammed connectivity in mature neurons by one defined factor and an assembly of a new synaptic circuit in adult brain.


Asunto(s)
Proteína 2 Inhibidora de la Diferenciación/genética , Transcripción Genética/genética , Animales , Epilepsia del Lóbulo Temporal/genética , Ratones , Fibras Musgosas del Hipocampo/fisiología , Neurogénesis/genética , Ratas
6.
Neurobiol Dis ; 124: 189-201, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30468865

RESUMEN

Multiple sclerosis is an inflammatory disease of the central nervous system (CNS) in which multiple sites of blood-brain barrier (BBB) disruption, focal inflammation, demyelination and tissue destruction are the hallmarks. Here we show that sphingosine-1-phosphate receptor 2 (S1PR2) has a negative role in myelin repair as well as an important role in demyelination by modulating BBB permeability. In lysolecithin-induced demyelination of adult mouse spinal cord, S1PR2 inactivation by either the pharmacological inhibitor JTE-013 or S1PR2 gene knockout led to enhanced myelin repair as determined by higher numbers of differentiated oligodendrocytes and increased numbers of remyelinated axons at the lesion sites. S1PR2 inactivation in lysolecithin-induced demyelination of the optic chiasm, enhanced oligodendrogenesis and improved the behavioral outcome in an optokinetic reflex test. In order to see the effect of S1PR2 inactivation on demyelination, experimental autoimmune encephalitis (EAE) was induced by MOG-peptide. S1PR2 inhibition or knockout decreased the extent of demyelinated areas as well as the clinical disability in this EAE model. Both toxin induced and EAE models showed decreased BBB leakage and reduced numbers of Iba1+ macrophages following S1PR2 inactivation. Our results suggest that S1PR2 activity impairs remyelination and also enhances BBB leakage and demyelination. The former effect could be mediated by Nogo-A, as antagonism of this factor enhances remyelination and S1PR2 can act as a Nogo-A receptor.


Asunto(s)
Esclerosis Múltiple/fisiopatología , Remielinización , Receptores de Esfingosina-1-Fosfato/fisiología , Animales , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/fisiopatología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/fisiología , Esclerosis Múltiple/patología , Vaina de Mielina/ultraestructura , Receptores de Esfingosina-1-Fosfato/genética , Médula Espinal/patología , Médula Espinal/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...