Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuron ; 110(14): 2283-2298.e9, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35649415

RESUMEN

A single sub-anesthetic dose of ketamine produces a rapid and sustained antidepressant response, yet the molecular mechanisms responsible for this remain unclear. Here, we identified cell-type-specific transcriptional signatures associated with a sustained ketamine response in mice. Most interestingly, we identified the Kcnq2 gene as an important downstream regulator of ketamine action in glutamatergic neurons of the ventral hippocampus. We validated these findings through a series of complementary molecular, electrophysiological, cellular, pharmacological, behavioral, and functional experiments. We demonstrated that adjunctive treatment with retigabine, a KCNQ activator, augments ketamine's antidepressant-like effects in mice. Intriguingly, these effects are ketamine specific, as they do not modulate a response to classical antidepressants, such as escitalopram. These findings significantly advance our understanding of the mechanisms underlying the sustained antidepressant effects of ketamine, with important clinical implications.


Asunto(s)
Ketamina , Animales , Antidepresivos/farmacología , Hipocampo , Canal de Potasio KCNQ2/genética , Ketamina/farmacología , Ketamina/uso terapéutico , Ratones , Proteínas del Tejido Nervioso , Neuronas
2.
Mol Psychiatry ; 26(8): 4191-4204, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33219358

RESUMEN

Major depressive disorder (MDD) is a complex and debilitating illness whose etiology remains unclear. Small RNA molecules, such as micro RNAs (miRNAs) have been implicated in MDD, where they display differential expression in the brain and the periphery. In this study, we quantified miRNA expression by small RNA sequencing in the anterior cingulate cortex and habenula of individuals with MDD and psychiatrically-healthy controls. Thirty-two miRNAs showed significantly correlated expression between the two regions (False Discovery Rate < 0.05), of which four, miR-204-5p, miR-320b, miR-323a-3p, and miR-331-3p, displayed upregulated expression in MDD. We assessed the expression of predicted target genes of differentially expressed miRNAs in the brain, and found that the expression of erb-b2 receptor tyrosine kinase 4 (ERBB4), a gene encoding a neuregulin receptor, was downregulated in both regions, and was influenced by miR-323a-3p in vitro. Finally, we assessed the effects of manipulating miRNA expression in the mouse ACC on anxiety- and depressive-like behaviors. Mice in which miR-323-3p was overexpressed or knocked-down displayed increased and decreased emotionality, respectively. Additionally, these mice displayed significantly downregulated and upregulated expression of Erbb4, respectively. Overall, our findings indicate the importance of brain miRNAs in the pathology of MDD, and emphasize the involvement of miR-323a-3p and ERBB4 in this phenotype. Future studies further characterizing miR-323a-3p and neuregulin signaling in depression are warranted.


Asunto(s)
Trastorno Depresivo Mayor , MicroARNs , Receptor ErbB-4 , Animales , Depresión , Trastorno Depresivo Mayor/genética , Perfilación de la Expresión Génica , Humanos , Ratones , MicroARNs/genética , Receptor ErbB-4/genética , Análisis de Secuencia de ARN
3.
Neuron ; 99(2): 389-403.e9, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30048615

RESUMEN

N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) are abundant mRNA modifications that regulate transcript processing and translation. The role of both, here termed m6A/m, in the stress response in the adult brain in vivo is currently unknown. Here, we provide a detailed analysis of the stress epitranscriptome using m6A/m-seq, global and gene-specific m6A/m measurements. We show that stress exposure and glucocorticoids region and time specifically alter m6A/m and its regulatory network. We demonstrate that deletion of the methyltransferase Mettl3 or the demethylase Fto in adult neurons alters the m6A/m epitranscriptome, increases fear memory, and changes the transcriptome response to fear and synaptic plasticity. Moreover, we report that regulation of m6A/m is impaired in major depressive disorder patients following glucocorticoid stimulation. Our findings indicate that brain m6A/m represents a novel layer of complexity in gene expression regulation after stress and that dysregulation of the m6A/m response may contribute to the pathophysiology of stress-related psychiatric disorders.


Asunto(s)
Adenosina/análogos & derivados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Psicológico/genética , Estrés Psicológico/metabolismo , Adenosina/genética , Adenosina/metabolismo , Adulto , Animales , Línea Celular Transformada , Humanos , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Estrés Psicológico/psicología
4.
PLoS One ; 8(8): e71836, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009667

RESUMEN

Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein, which is highly and frequently expressed in carcinomas and (cancer-)stem cells, and which plays an important role in the regulation of stem cell pluripotency. We show here that murine EpCAM (mEpCAM) is subject to regulated intramembrane proteolysis in various cells including embryonic stem cells and teratocarcinomas. As shown with ectopically expressed EpCAM variants, cleavages occur at α-, ß-, γ-, and ε-sites to generate soluble ectodomains, soluble Aß-like-, and intracellular fragments termed mEpEX, mEp-ß, and mEpICD, respectively. Proteolytic sites in the extracellular part of mEpCAM were mapped using mass spectrometry and represent cleavages at the α- and ß-sites by metalloproteases and the b-secretase BACE1, respectively. Resulting C-terminal fragments (CTF) are further processed to soluble Aß-like fragments mEp-ß and cytoplasmic mEpICD variants by the g-secretase complex. Noteworthy, cytoplasmic mEpICD fragments were subject to efficient degradation in a proteasome-dependent manner. In addition the γ-secretase complex dependent cleavage of EpCAM CTF liberates different EpICDs with different stabilities towards proteasomal degradation. Generation of CTF and EpICD fragments and the degradation of hEpICD via the proteasome were similarly demonstrated for the human EpCAM ortholog. Additional EpCAM orthologs have been unequivocally identified in silico in 52 species. Sequence comparisons across species disclosed highest homology of BACE1 cleavage sites and in presenilin-dependent γ-cleavage sites, whereas strongest heterogeneity was observed in metalloprotease cleavage sites. In summary, EpCAM is a highly conserved protein present in fishes, amphibians, reptiles, birds, marsupials, and placental mammals, and is subject to shedding, γ-secretase-dependent regulated intramembrane proteolysis, and proteasome-mediated degradation.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Moléculas de Adhesión Celular/metabolismo , Membrana Celular/metabolismo , Secuencia de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Antígenos de Neoplasias/química , Moléculas de Adhesión Celular/química , Línea Celular , Secuencia Conservada , Molécula de Adhesión Celular Epitelial , Humanos , Ratones , Datos de Secuencia Molecular , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Vertebrados
5.
PLoS One ; 8(1): e55540, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23383219

RESUMEN

The study of tumourigenesis commonly involves the use of established cell lines or single cell suspensions of primary tumours. Standard methods for the generation of short-term tumour cell cultures include the disintegration of tissue based on enzymatic and mechanical stress. Here, we describe a simple and rapid method for the preparation of single cells from primary carcinomas, which is independent of enzymatic treatment and feeder cells. Tumour biopsies are processed to 1 mm(3) cubes termed explants, which are cultured 1-3 days on agarose-coated well plates in specified medium. Through incisions generated in the explants, single cells are retrieved and collected from the culture supernatant and can be used for further analysis including in vitro and in vivo studies. Collected cells retain tumour-forming capacity in xenotransplantation assays, mimic the phenotype of the primary tumour, and facilitate the generation of cell lines.


Asunto(s)
Separación Celular , Neoplasias/patología , Animales , Biopsia , Carcinoma/patología , Carcinoma/cirugía , Línea Celular Tumoral , Separación Celular/métodos , Transformación Celular Neoplásica , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/cirugía , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias/cirugía , Fenotipo , Trasplante Heterólogo , Células Tumorales Cultivadas , Ensayo de Tumor de Célula Madre
6.
Int J Exp Pathol ; 93(5): 341-53, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22974215

RESUMEN

Epithelial cell adhesion molecule (EpCAM) is a single-transmembrane protein, which is involved in numerous cellular processes including cell adhesion, proliferation, maintenance of stemness of embryonic cells and progenitors, migration and invasion. Activation of signal transduction by EpCAM is warranted by regulated intramembrane proteolysis and nuclear translocation of the intracellular domain EpICD. Here, we describe matrix metalloproteinase 7 (MMP7) as a target gene of EpCAM signalling viaEpICD nuclear translocation. EpCAM and MMP7 expression pattern and levels positively correlated in vitro and in vivo, and were strongly elevated in primary carcinomas of the head and neck area. Hence, MMP7 is a novel target of EpCAM signalling.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Carcinoma de Células Escamosas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Metaloproteinasa 7 de la Matriz/metabolismo , Transducción de Señal/fisiología , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Molécula de Adhesión Celular Epitelial , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma
7.
Cancer Lett ; 300(1): 20-9, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20884117

RESUMEN

Transketolase-like protein 1 (TKTL1) is a member of the family of transketolase enzymes of which the founder member transketolase (TKT) is known to play a central role in the non-oxidative part of the pentose phosphate pathway. According to several publications TKTL1 is the only family member, whose expression is substantially de-regulated in a variety of solid tumours. Over-expression of TKTL1 correlates with poor prognosis of cancer patients and TKTL1 itself represents a potential therapeutic target owing to its possible involvement in the regulation of the proliferation and metabolism of cancer cells. We show that exogenously expressed TKTL1 provides HEK293 cells with moderate growth advantages under standard culture conditions, while protecting cells from growth factor withdrawal-induced apoptosis. Importantly, we identified TKTL1 with the JFC12T10 antibody as a 65kDa protein, which was however absent in most tumour cell lines tested. Primary head and neck squamous cell carcinomas of various localisations were characterised by a focal pattern with single cells strongly expressing TKTL1, rather than by a homogeneous expression pattern within the tumour mass.


Asunto(s)
Proliferación Celular , Péptidos y Proteínas de Señalización Intercelular/fisiología , Transcetolasa/fisiología , Apoptosis , Línea Celular , Humanos , Peso Molecular , Vía de Pentosa Fosfato , ARN Mensajero/análisis , ARN Interferente Pequeño/genética , Transcetolasa/antagonistas & inhibidores , Transcetolasa/genética
8.
BMC Cancer ; 9: 402, 2009 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-19925656

RESUMEN

BACKGROUND: Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein, which is frequently over-expressed in simple epithelia, progenitors, embryonic and tissue stem cells, carcinoma and cancer-initiating cells. Besides functioning as a homophilic adhesion protein, EpCAM is an oncogenic receptor that requires regulated intramembrane proteolysis for activation of its signal transduction capacity. Upon cleavage, the extracellular domain EpEX is released as a soluble ligand while the intracellular domain EpICD translocates into the cytoplasm and eventually into the nucleus in combination with four-and-a-half LIM domains protein 2 (FHL2) and beta-catenin, and drives cell proliferation. METHODS: EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were investigated under varying density conditions using confocal laser scanning microscopy, immunoblotting, cell counting, and conditional cell systems. RESULTS: EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were dependent on adequate cell-to-cell contact. If cell-to-cell contact was prohibited EpCAM did not provide growth advantages. If cells were allowed to undergo contact to each other, EpCAM transmitted proliferation signals based on signal transduction-related cleavage processes. Accordingly, the pre-cleaved version EpICD was not dependent on cell-to-cell contact in order to induce c-myc and cell proliferation, but necessitated nuclear translocation. For the case of contact-inhibited cells, although cleavage of EpCAM occurred, nuclear translocation of EpICD was reduced, as were EpCAM effects. CONCLUSION: Activation of EpCAM's cleavage and oncogenic capacity is dependent on cellular interaction (juxtacrine) to provide for initial signals of regulated intramembrane proteolysis, which then support signalling via soluble EpEX (paracrine).


Asunto(s)
Antígenos de Neoplasias/metabolismo , Moléculas de Adhesión Celular/metabolismo , Comunicación Celular/fisiología , Transducción de Señal/fisiología , Western Blotting , Línea Celular Tumoral , Proliferación Celular , Molécula de Adhesión Celular Epitelial , Humanos , Inmunoprecipitación , Microscopía Confocal , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA