Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38236087

RESUMEN

We present the development of an experimental platform that can collect four frames of x-ray diffraction data along a single line of sight during laser-driven, dynamic-compression experiments at the National Ignition Facility. The platform is comprised of a diagnostic imager built around ultrafast sensors with a 2-ns integration time, a custom target assembly that serves also to shield the imager, and a 10-ns duration, quasi-monochromatic x-ray source produced by laser-generated plasma. We demonstrate the performance with diffraction data for Pb ramp compressed to 150 GPa and illuminated by a Ge x-ray source that produces ∼7 × 1011, 10.25-keV photons/ns at the 400 µm diameter sample.

2.
Nat Commun ; 14(1): 7046, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949859

RESUMEN

Large laser facilities have recently enabled material characterization at the pressures of Earth and Super-Earth cores. However, the temperature of the compressed materials has been largely unknown, or solely relied on models and simulations, due to lack of diagnostics under these challenging conditions. Here, we report on temperature, density, pressure, and local structure of copper determined from extended x-ray absorption fine structure and velocimetry up to 1 Terapascal. These results nearly double the highest pressure at which extended x-ray absorption fine structure has been reported in any material. In this work, the copper temperature is unexpectedly found to be much higher than predicted when adjacent to diamond layer(s), demonstrating the important influence of the sample environment on the thermal state of materials; this effect may introduce additional temperature uncertainties in some previous experiments using diamond and provides new guidance for future experimental design.

3.
Phys Rev Lett ; 130(7): 076101, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36867795

RESUMEN

Silicon (Si) exhibits a rich collection of phase transitions under ambient-temperature isothermal and shock compression. This report describes in situ diffraction measurements of ramp-compressed Si between 40 and 389 GPa. Angle-dispersive x-ray scattering reveals that Si assumes an hexagonal close-packed (hcp) structure between 40 and 93 GPa and, at higher pressure, a face-centered cubic structure that persists to at least 389 GPa, the highest pressure for which the crystal structure of Si has been investigated. The range of hcp stability extends to higher pressures and temperatures than predicted by theory.

4.
Rev Sci Instrum ; 93(12): 123902, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586918

RESUMEN

This study investigates methods to optimize quasi-monochromatic, ∼10 ns long x-ray sources (XRS) for time-resolved x-ray diffraction measurements of phase transitions during dynamic laser compression measurements at the National Ignition Facility (NIF). To support this, we produce continuous and pulsed XRS by irradiating a Ge foil with NIF lasers to achieve an intensity of 2 × 1015 W/cm2, optimizing the laser-to-x-ray conversion efficiency. Our x-ray source is dominated by Ge He-α line emission. We discuss methods to optimize the source to maintain a uniform XRS for ∼10 ns, mitigating cold plasma and higher energy x-ray emission lines.

6.
Nat Commun ; 13(1): 2260, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477934

RESUMEN

There has been considerable recent interest in the high-pressure behavior of silicon carbide, a potential major constituent of carbon-rich exoplanets. In this work, the atomic-level structure of SiC was determined through in situ X-ray diffraction under laser-driven ramp compression up to 1.5 TPa; stresses more than seven times greater than previous static and shock data. Here we show that the B1-type structure persists over this stress range and we have constrained its equation of state (EOS). Using this data we have determined the first experimentally based mass-radius curves for a hypothetical pure SiC planet. Interior structure models are constructed for planets consisting of a SiC-rich mantle and iron-rich core. Carbide planets are found to be ~10% less dense than corresponding terrestrial planets.

7.
Phys Rev Lett ; 127(15): 155002, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34678005

RESUMEN

The study of high-velocity particle-laden flow interactions is of importance for the understanding of a wide range of natural phenomena, ranging from planetary formation to cloud interactions. Experimental observations of particle dynamics are sparse given the difficulty of generating high-velocity flows of many particles. Ejecta microjets are micron-scale jets formed by strong shocks interacting with imprinted surfaces to generate particle plumes traveling at several kilometers per second. As such, the interaction of two ejecta microjets provides a novel experimental methodology to study interacting particle streams. In this Letter, we report the first time sequences of x-ray radiography images of two interacting tin ejecta microjets taken on a platform designed for the OMEGA Extended Performance (OMEGA EP) laser. We observe that the microjets pass through each other unattenuated for the case of 11.7±3.2 GPa shock pressures and jet velocities of 2.2±0.5 km/s but show strong interaction dynamics for 116.0±6.1 GPa shock pressures and jet velocities of 6.5±0.5 km/s. We find that radiation-hydrodynamic simulations of the experiments are able to capture many aspects of the collisional behavior, such as the attenuation of jet velocity in the direction of propagation, but are unable to match the full spread of the strongly interacting cloud.

8.
Phys Rev Lett ; 127(13): 135701, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34623849

RESUMEN

The ubiquitous nature and unusual properties of water have motivated many studies on its metastability under temperature- or pressure-induced phase transformations. Here, nanosecond compression by a high-power laser is used to create the nonequilibrium conditions where liquid water persists well into the stable region of ice VII. Through our experiments, as well as a complementary theoretical-computational analysis based on classical nucleation theory, we report that the metastability limit of liquid water under nearly isentropic compression from ambient conditions is at least 8 GPa, higher than the 7 GPa previously reported for lower loading rates.

9.
Phys Rev Lett ; 126(25): 255701, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34241515

RESUMEN

Tantalum was once thought to be the canonical bcc metal, but is now predicted to transition to the Pnma phase at the high pressures and temperatures expected along the principal Hugoniot. Furthermore, there remains a significant discrepancy between a number of static diamond anvil cell experiments and gas gun experiments in the measured melt temperatures at high pressures. Our in situ x-ray diffraction experiments on shock compressed tantalum show that it does not transition to the Pnma phase or other candidate phases at high pressure. We observe incipient melting at approximately 254±15 GPa and complete melting by 317±10 GPa. These transition pressures from the nanosecond experiments presented here are consistent with what can be inferred from microsecond gas gun sound velocity measurements. Furthermore, the observation of a coexistence region on the Hugoniot implies the lack of significant kinetically controlled deviation from equilibrium behavior. Consequently, we find that kinetics of phase transitions cannot be used to explain the discrepancy between static and dynamic measurements of the tantalum melt curve. Using available high pressure thermodynamic data for tantalum and our measurements of the incipient and complete melting transition pressures, we are able to infer a melting temperature 8070_{-750}^{+1250} K at 254±15 GPa, which is consistent with ambient and a recent static high pressure melt curve measurement.

10.
Rev Sci Instrum ; 92(5): 053904, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243269

RESUMEN

We present the results of experiments to produce a 10 ns-long, quasi-monochromatic x-ray source. This effort is needed to support time-resolved x-ray diffraction (XRDt) measurements of phase transitions during laser-driven dynamic compression experiments at the National Ignition Facility. To record XRDt of phase transitions as they occur, we use high-speed (∼1 ns) gated hybrid CMOS detectors, which record multiple frames of data over a timescale of a few to tens of ns. Consequently, to make effective use of these imagers, XRDt needs the x-ray source to be narrow in energy and uniform in time as long as the sensors are active. The x-ray source is produced by a laser irradiated Ge foil. Our results indicate that the x-ray source lasts during the whole duration of the main laser pulse. Both time-resolved and time-integrated spectral data indicate that the line emission is dominated by the He-α complex over higher energy emission lines. Time-integrated spectra agree well with a one-dimensional Cartesian simulation using HYDRA that predicts a conversion efficiency of 0.56% when the incident intensity is 2 × 1015 W/cm2 on a Ge backlighter.

11.
Science ; 372(6546): 1063-1068, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34083483

RESUMEN

New techniques are advancing the frontier of high-pressure physics beyond 1 terapascal, leading to new discoveries and offering stringent tests for condensed-matter theory and advanced numerical methods. However, the ability to absolutely determine the pressure state remains challenging, and well-calibrated pressure-density reference materials are required. We conducted shockless dynamic compression experiments at the National Ignition Facility and the Z machine to obtain quasi-absolute, high-precision, pressure-density equation-of-state data for gold and platinum. We derived two experimentally constrained pressure standards to terapascal conditions. Establishing accurate experimental determinations of extreme pressure will facilitate better connections between experiments and theory, paving the way toward improving our understanding of material response to these extreme conditions.

12.
Nature ; 593(7860): 517-521, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34040210

RESUMEN

The phase behaviour of warm dense hydrogen-helium (H-He) mixtures affects our understanding of the evolution of Jupiter and Saturn and their interior structures1,2. For example, precipitation of He from a H-He atmosphere at about 1-10 megabar and a few thousand kelvin has been invoked to explain both the excess luminosity of Saturn1,3, and the depletion of He and neon (Ne) in Jupiter's atmosphere as observed by the Galileo probe4,5. But despite its importance, H-He phase behaviour under relevant planetary conditions remains poorly constrained because it is challenging to determine computationally and because the extremes of temperature and pressure are difficult to reach experimentally. Here we report that appropriate temperatures and pressures can be reached through laser-driven shock compression of H2-He samples that have been pre-compressed in diamond-anvil cells. This allows us to probe the properties of H-He mixtures under Jovian interior conditions, revealing a region of immiscibility along the Hugoniot. A clear discontinuous change in sample reflectivity indicates that this region ends above 150 gigapascals at 10,200 kelvin and that a more subtle reflectivity change occurs above 93 gigapascals at 4,700 kelvin. Considering pressure-temperature profiles for Jupiter, these experimental immiscibility constraints for a near-protosolar mixture suggest that H-He phase separation affects a large fraction-we estimate about 15 per cent of the radius-of Jupiter's interior. This finding provides microphysical support for Jupiter models that invoke a layered interior to explain Juno and Galileo spacecraft observations1,4,6-8.

13.
J Synchrotron Radiat ; 28(Pt 3): 688-706, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33949979

RESUMEN

The high-precision X-ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X-ray Free-Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump-probe X-ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X-ray heating and diffraction of Bi under pressure, obtained using 20 fs X-ray pulses at 17.8 keV and 2.2 MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC.

15.
Rev Sci Instrum ; 92(1): 013101, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33514249

RESUMEN

We introduce a setup to measure high-resolution inelastic x-ray scattering at the High Energy Density scientific instrument at the European X-Ray Free-Electron Laser (XFEL). The setup uses the Si (533) reflection in a channel-cut monochromator and three spherical diced analyzer crystals in near-backscattering geometry to reach a high spectral resolution. An energy resolution of 44 meV is demonstrated for the experimental setup, close to the theoretically achievable minimum resolution. The analyzer crystals and detector are mounted on a curved-rail system, allowing quick and reliable changes in scattering angle without breaking vacuum. The entire setup is designed for operation at 10 Hz, the same repetition rate as the high-power lasers available at the instrument and the fundamental repetition rate of the European XFEL. Among other measurements, it is envisioned that this setup will allow studies of the dynamics of highly transient laser generated states of matter.

16.
Nature ; 589(7843): 532-535, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33505034

RESUMEN

Carbon is the fourth-most prevalent element in the Universe and essential for all known life. In the elemental form it is found in multiple allotropes, including graphite, diamond and fullerenes, and it has long been predicted that even more structures can exist at pressures greater than those at Earth's core1-3. Several phases have been predicted to exist in the multi-terapascal regime, which is important for accurate modelling of the interiors of carbon-rich exoplanets4,5. By compressing solid carbon to 2 terapascals (20 million atmospheres; more than five times the pressure at Earth's core) using ramp-shaped laser pulses and simultaneously measuring nanosecond-duration time-resolved X-ray diffraction, we found that solid carbon retains the diamond structure far beyond its regime of predicted stability. The results confirm predictions that the strength of the tetrahedral molecular orbital bonds in diamond persists under enormous pressure, resulting in large energy barriers that hinder conversion to more-stable high-pressure allotropes1,2, just as graphite formation from metastable diamond is kinetically hindered at atmospheric pressure. This work nearly doubles the highest pressure at which X-ray diffraction has been recorded on any material.

17.
Phys Rev Lett ; 125(16): 165701, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33124844

RESUMEN

Equation-of-state (pressure, density, temperature, internal energy) and reflectivity measurements on shock-compressed CO_{2} at and above the insulating-to-conducting transition reveal new insight into the chemistry of simple molecular systems in the warm-dense-matter regime. CO_{2} samples were precompressed in diamond-anvil cells to tune the initial densities from 1.35 g/cm^{3} (liquid) to 1.74 g/cm^{3} (solid) at room temperature and were then shock compressed up to 1 TPa and 93 000 K. Variation in initial density was leveraged to infer thermodynamic derivatives including specific heat and Gruneisen coefficient, exposing a complex bonded and moderately ionized state at the most extreme conditions studied.

18.
Sci Rep ; 10(1): 14564, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32884061

RESUMEN

We present a method to determine the bulk temperature of a single crystal diamond sample at an X-Ray free electron laser using inelastic X-ray scattering. The experiment was performed at the high energy density instrument at the European XFEL GmbH, Germany. The technique, based on inelastic X-ray scattering and the principle of detailed balance, was demonstrated to give accurate temperature measurements, within [Formula: see text] for both room temperature diamond and heated diamond to 500 K. Here, the temperature was increased in a controlled way using a resistive heater to test theoretical predictions of the scaling of the signal with temperature. The method was tested by validating the energy of the phonon modes with previous measurements made at room temperature using inelastic X-ray scattering and neutron scattering techniques. This technique could be used to determine the bulk temperature in transient systems with a temporal resolution of 50 fs and for which accurate measurements of thermodynamic properties are vital to build accurate equation of state and transport models.

19.
Rev Sci Instrum ; 91(4): 043902, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32357733

RESUMEN

We report details of an experimental platform implemented at the National Ignition Facility to obtain in situ powder diffraction data from solids dynamically compressed to extreme pressures. Thin samples are sandwiched between tamper layers and ramp compressed using a gradual increase in the drive-laser irradiance. Pressure history in the sample is determined using high-precision velocimetry measurements. Up to two independently timed pulses of x rays are produced at or near the time of peak pressure by laser illumination of thin metal foils. The quasi-monochromatic x-ray pulses have a mean wavelength selectable between 0.6 Å and 1.9 Å depending on the foil material. The diffracted signal is recorded on image plates with a typical 2θ x-ray scattering angle uncertainty of about 0.2° and resolution of about 1°. Analytic expressions are reported for systematic corrections to 2θ due to finite pinhole size and sample offset. A new variant of a nonlinear background subtraction algorithm is described, which has been used to observe diffraction lines at signal-to-background ratios as low as a few percent. Variations in system response over the detector area are compensated in order to obtain accurate line intensities; this system response calculation includes a new analytic approximation for image-plate sensitivity as a function of photon energy and incident angle. This experimental platform has been used up to 2 TPa (20 Mbar) to determine the crystal structure, measure the density, and evaluate the strain-induced texturing of a variety of compressed samples spanning periods 2-7 on the periodic table.

20.
Phys Rev E ; 101(2-1): 023204, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32168658

RESUMEN

We report measurements of K-shell fluorescence lines induced by fast electrons in ramp-compressed Co targets. The fluorescence emission was stimulated by fast electrons generated through short-pulse laser-solid interaction with an Al target layer. Compression up to 2.1× solid density was achieved while maintaining temperatures well below the Fermi energy, effectively removing the thermal effects from consideration. We observed small but unambiguous redshifts in the Kß fluorescence line relative to unshifted Cu Kα. Redshifts up to 2.6 eV were found to increase with compression and to be consistent with predictions from self-consistent models based on density-functional theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...