Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 35(3): 261-280, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38189228

RESUMEN

SIGNIFICANCE STATEMENT: Patients with AKI suffer a staggering mortality rate of approximately 30%. Fibroblast growth factor 23 (FGF23) and phosphate (P i ) rise rapidly after the onset of AKI and have both been independently associated with ensuing morbidity and mortality. This study demonstrates that dietary P i restriction markedly diminished the early rise in plasma FGF23 and prevented the rise in plasma P i , parathyroid hormone, and calcitriol in mice with folic acid-induced AKI (FA-AKI). Furthermore, the study provides evidence for P i -sensitive osseous Fgf23 mRNA expression and reveals that P i restriction mitigated calciprotein particles (CPPs) formation, inflammation, acidosis, cardiac electrical disturbances, and mortality in mice with FA-AKI. These findings suggest that P i restriction may have a prophylactic potential in patients at risk for AKI. BACKGROUND: In AKI, plasma FGF23 and P i rise rapidly and are independently associated with disease severity and outcome. METHODS: The effects of normal (NP) and low (LP) dietary P i were investigated in mice with FA-AKI after 3, 24, and 48 hours and 14 days. RESULTS: After 24 hours of AKI, the LP diet curbed the rise in plasma FGF23 and prevented that of parathyroid hormone and calcitriol as well as of osseous but not splenic or thymic Fgf23 mRNA expression. The absence of Pth prevented the rise in calcitriol and reduced the elevation of FGF23 in FA-AKI with the NP diet. Furthermore, the LP diet attenuated the rise in renal and plasma IL-6 and mitigated the decline in renal α -Klotho. After 48 hours, the LP diet further dampened renal IL-6 expression and resulted in lower urinary neutrophil gelatinase-associated lipocalin. In addition, the LP diet prevented the increased formation of CPPs. Fourteen days after AKI induction, the LP diet group maintained less elevated plasma FGF23 levels and had greater survival than the NP diet group. This was associated with prevention of metabolic acidosis, hypocalcemia, hyperkalemia, and cardiac electrical disturbances. CONCLUSIONS: This study reveals P i -sensitive FGF23 expression in the bone but not in the thymus or spleen in FA-AKI and demonstrates that P i restriction mitigates CPP formation, inflammation, acidosis, and mortality in this model. These results suggest that dietary P i restriction could have prophylactic potential in patients at risk for AKI.


Asunto(s)
Acidosis , Lesión Renal Aguda , Animales , Humanos , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Calcitriol , Ácido Fólico , Inflamación , Interleucina-6 , Hormona Paratiroidea , Fosfatos , ARN Mensajero
3.
Am J Physiol Renal Physiol ; 326(1): F105-F117, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881875

RESUMEN

Folic acid (FA)-induced acute kidney injury (FA-AKI) is an increasingly prevalent rodent disease model involving the injection of a high dose of FA that culminates in renal FA crystal deposition and injury. However, the literature characterizing the FA-AKI model is sparse and dated in part due to the absence of a well-described methodology for the visualization and quantification of renal FA crystals. Using widely available materials and tools, we developed a straightforward and crystal-preserving histological protocol that can be coupled with automated imaging for renal FA crystal visualization and generated an automated macro for downstream crystal content quantification. The applicability of the method was demonstrated by characterizing the model in male and female C57BL6/JRj mice after 3 and 30 h of FA treatment. Kidneys from both sexes and timepoints showed a bimodal distribution of FA crystal deposition in the cortical and medullary regions while, compared with males, females exhibited higher renal FA crystal content at the 30-h timepoint accompanied by greater kidney weight and higher plasma urea. Despite comparable plasma phosphate concentrations, FA-AKI resulted in a substantially more elevated plasma intact fibroblast growth factor 23 (FGF23) in females, reflected by a similar pattern in osseous Fgf23 mRNA expression. Therefore, the presented method constitutes a valuable tool for the quantification of renal FA crystals, which can aid the mechanistic characterization of the FA-AKI model and serves as a means to control for confounding changes in FA crystallization when using the model for investigating early and prophylactic AKI therapeutic interventions.NEW & NOTEWORTHY Here, we describe a novel method for the visualization and quantification of renal folic acid (FA) crystals in the rodent FA-induced acute kidney injury (FA-AKI) model. The protocol involves a straightforward histological approach followed by fully automated imaging and quantification steps. Applicability was confirmed by showing that the FA-AKI model is sex-dependent. The method can serve as a tool to aid in characterizing FA-AKI and to control for studies investigating prophylactic therapeutic avenues using FA-AKI.


Asunto(s)
Lesión Renal Aguda , Ácido Fólico , Masculino , Femenino , Ratones , Animales , Lesión Renal Aguda/patología , Riñón/patología , Nitrógeno de la Urea Sanguínea , Ratones Endogámicos C57BL
4.
Clin Kidney J ; 16(10): 1622-1633, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37779856

RESUMEN

Background: Hyperphosphatemia is associated with increased mortality and cardiovascular morbidity of end-stage kidney failure (ESKF) patients. Managing serum phosphate in ESKF patients is challenging and mostly based on limiting intestinal phosphate absorption with low phosphate diets and phosphate binders (PB). In a multi-centric, double-blinded, placebo-controlled study cohort of maintenance hemodialysis patients with hyperphosphatemia, we demonstrated the efficacy of nicotinamide modified release (NAMR) formulation treatment in addition to standard PB therapy in decreasing serum phosphate. Here we aimed to assess the relationship between phosphate, FGF23, inflammation and iron metabolism in this cohort. Methods: We measured the plasma concentrations of intact fibroblast growth factor 23 (iFGF23) and selected proinflammatory cytokines at baseline and Week 12 after initiating treatment. Results: We observed a strong correlation between iFGF23 and cFGF23 (C-terminal fragment plus iFGF23). We identified iFGF23 as a better predictor of changes in serum phosphate induced by NAMR and PB treatment compared with cFGF23. Recursive partitioning revealed at baseline and Week 12, that iFGF23 and cFGF23 together with T50 propensity were the most important predictors of serum phosphate, whereas intact parathyroid hormone (iPTH) played a minor role in this model. Furthermore, we found serum phosphate and iPTH as the best predictors of iFGF23 and cFGF23. Sex, age, body mass index, and markers of inflammation and iron metabolism had only a minor impact in predicting FGF23. Conclusion: Lowering serum phosphate in ESKF patients may depend highly on iFGF23 which is correlated to cFGF23 levels. Serum phosphate was the most important predictor of plasma FGF23 in this ESKF cohort.

5.
Am J Physiol Renal Physiol ; 321(6): F785-F798, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34719948

RESUMEN

Na+-dependent phosphate cotransporters NaPi-IIa and NaPi-IIc, located at the brush-border membrane of renal proximal tubules, are regulated by numerous factors, including fibroblast growth factor 23 (FGF23). FGF23 downregulates NaPi-IIa and NaPi-IIc abundance after activating a signaling pathway involving phosphorylation of ERK1/2 (phospho-ERK1/2). FGF23 also downregulates expression of renal 1-α-hydroxylase (Cyp27b1) and upregulates 24-hydroxylase (Cyp24a1), thus reducing plasma calcitriol levels. Here, we examined the time course of FGF23-induced internalization of NaPi-IIa and NaPi-IIc and their intracellular pathway toward degradation in vivo. Mice were injected intraperitoneally with recombinant human (rh)FGF23 in the absence (biochemical analysis) or presence (immunohistochemistry) of leupeptin, an inhibitor of lysosomal proteases. Phosphorylation of ERK1/2 was enhanced 60 min after rhFGF23 administration, and increased phosphorylation was still detected 480 min after injection. Colocalization of phospho-ERK1/2 with NaPi-IIa was seen at 60 and 120 min and partly at 480 min. The abundance of both cotransporters was reduced 240 min after rhFGF23 administration, with a further reduction at 480 min. NaPi-IIa and NaPi-IIc were found to colocalize with clathrin and early endosomal antigen 1 as early as 120 min after rhFGF23 injection. Both cotransporters partially colocalized with cathepsin B and lysosomal-associated membrane protein-1, markers of lysosomes, 120 min after rhFGF23 injection. Thus, NaPi-IIa and NaPi-IIc are internalized within 2 h upon rhFGF23 injection. Both cotransporters share the pathway of clathrin-mediated endocytosis that leads first to early endosomes, finally resulting in trafficking toward the lysosome as early as 120 min after rhFGF23 administration.NEW & NOTEWORTHY The hormone fibroblast growth factor 23 (FGF23) controls phosphate homeostasis by regulating renal phosphate excretion. FGF23 acts on several phosphate transporters in the kidney. Here, we define the time course of this action and demonstrate how phosphate transporters NaPi-IIa and NaPi-IIc are internalized.


Asunto(s)
Endosomas/efectos de los fármacos , Factor-23 de Crecimiento de Fibroblastos/farmacología , Riñón/efectos de los fármacos , Lisosomas/efectos de los fármacos , Animales , Endosomas/metabolismo , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Riñón/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Lisosomas/metabolismo , Ratones , Hormona Paratiroidea/metabolismo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo
6.
Sci Rep ; 11(1): 6175, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731726

RESUMEN

Fibroblast growth factor 23 (FGF23) is a bone-derived endocrine hormone that regulates phosphate and vitamin D metabolism. In models of FGF23 excess, renal deoxyribonuclease 1 (Dnase1) mRNA expression is downregulated. Dnase-1 is an endonuclease which binds monomeric actin. We investigated whether FGF23 suppresses renal Dnase-1 expression to facilitate endocytic retrieval of renal sodium dependent phosphate co-transporters (NaPi-IIa/c) from the brush border membrane by promoting actin polymerization. We showed that wild type mice on low phosphate diet and Fgf23-/- mice with hyperphosphatemia have increased renal Dnase1 mRNA expression while in Hyp mice with FGF23 excess and hypophosphatemia, Dnase1 mRNA expression is decreased. Administration of FGF23 in wild type and Fgf23-/- mice lowered Dnase1 expression. Taken together, our data shows that Dnase1 is regulated by FGF23. In 6-week-old Dnase1-/- mice, plasma phosphate and renal NaPi-IIa protein were significantly lower compared to wild-type mice. However, these changes were transient, normalized by 12 weeks of age and had no impact on bone morphology. Adaptation to low and high phosphate diet were similar in Dnase1-/- and Dnase1+/+ mice, and loss of Dnase1 gene expression did not rescue hyperphosphatemia in Fgf23-/- mice. We conclude that Dnase-1 does not mediate FGF23-induced inhibition of renal tubular phosphate reabsorption.


Asunto(s)
Desoxirribonucleasa I/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hiperfosfatemia/metabolismo , Hipofosfatemia/metabolismo , Riñón/metabolismo , Fosfatos/metabolismo , Animales , Factor-23 de Crecimiento de Fibroblastos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Clin Sci (Lond) ; 135(1): 201-227, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33416083

RESUMEN

Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Inflamación/metabolismo , Inflamación/patología , Fosfatos/metabolismo , Calcio/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Insuficiencia Renal Crónica/metabolismo
8.
Pflugers Arch ; 471(9): 1159-1160, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31300871
9.
Kidney Int ; 96(4): 890-905, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31301888

RESUMEN

Fibroblast growth factor 23 (FGF23) regulates phosphate homeostasis, and its early rise in patients with chronic kidney disease is independently associated with all-cause mortality. Since inflammation is characteristic of chronic kidney disease and associates with increased plasma FGF23 we examined whether inflammation directly stimulates FGF23. In a population-based cohort, plasma tumor necrosis factor (TNF) was the only inflammatory cytokine that independently and positively correlated with plasma FGF23. Mouse models of chronic kidney disease showed signs of renal inflammation, renal FGF23 expression and elevated systemic FGF23 levels. Renal FGF23 expression coincided with expression of the orphan nuclear receptor Nurr1 regulating FGF23 in other organs. Antibody-mediated neutralization of TNF normalized plasma FGF23 and suppressed ectopic renal Fgf23 expression. Conversely, TNF administration to control mice increased plasma FGF23 without altering plasma phosphate. Moreover, in Il10-deficient mice with inflammatory bowel disease and normal kidney function, plasma FGF23 was elevated and normalized upon TNF neutralization. Thus, the inflammatory cytokine TNF contributes to elevated systemic FGF23 levels and also triggers ectopic renal Fgf23 expression in animal models of chronic kidney disease.


Asunto(s)
Factores de Crecimiento de Fibroblastos/sangre , Enfermedades Inflamatorias del Intestino/inmunología , Insuficiencia Renal Crónica/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Animales , Línea Celular , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/inmunología , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/sangre , Interleucina-10/deficiencia , Interleucina-10/genética , Riñón/inmunología , Riñón/patología , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Cultivo Primario de Células , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/patología , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/inmunología
11.
Front Physiol ; 9: 1494, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405444

RESUMEN

Fibroblast growth factor 23 (FGF23) regulates phosphate homeostasis and vitamin D metabolism. In patients with acute kidney injury (AKI), FGF23 levels rise rapidly after onset of AKI and are associated with AKI progression and increased mortality. In mouse models of AKI, excessive rise in FGF23 levels is accompanied by a moderate increase in FGF23 expression in bone. We examined the folic acid-induced AKI (FA-AKI) mouse model to determine whether other organs contribute to the increase in plasma FGF23 and assessed the vitamin D axis as a possible trigger for increased Fgf23 gene expression. Twenty-four hours after initiation of FA-AKI, plasma intact FGF23 and 1,25(OH)2D were increased and kidney function declined. FA-treated mice developed renal inflammation as shown by increased Tnf and Tgfb mRNA expression. Fgf23 mRNA expression was 5- to 15-fold upregulated in thymus, spleen and heart of FA-treated mice, respectively, but only 2-fold in bone. Ectopic renal Fgf23 mRNA expression was also detected in FA-AKI mice. Plasma FGF23 and Fgf23 mRNA expression in thymus, spleen, heart, and bone strongly correlated with renal Tnf mRNA expression. Furthermore, Vdr mRNA expression was upregulated in spleen, thymus and heart and strongly correlated with Fgf23 mRNA expression in the same organ. In conclusion, the rapid rise in plasma FGF23 in FA-AKI mice is accompanied by increased Fgf23 mRNA expression in multiple organs and increased Vdr expression in extra osseous tissues together with increased plasma 1,25(OH)2D and inflammation may trigger the rise in FGF23 in FA-AKI.

12.
J Clin Invest ; 128(12): 5368-5373, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30226830

RESUMEN

Hyperphosphatemic familial tumoral calcinosis (HFTC)/hyperostosis-hyperphosphatemia syndrome (HHS) is an autosomal recessive disorder of ectopic calcification due to deficiency of or resistance to intact fibroblast growth factor 23 (iFGF23). Inactivating mutations in FGF23, N-acetylgalactosaminyltransferase 3 (GALNT3), or KLOTHO (KL) have been reported as causing HFTC/HHS. We present what we believe is the first identified case of autoimmune hyperphosphatemic tumoral calcinosis in an 8-year-old boy. In addition to the classical clinical and biochemical features of hyperphosphatemic tumoral calcinosis, the patient exhibited markedly elevated intact and C-terminal FGF23 levels, suggestive of FGF23 resistance. However, no mutations in FGF23, KL, or FGF receptor 1 (FGFR1) were identified. He subsequently developed type 1 diabetes mellitus, which raised the possibility of an autoimmune cause for hyperphosphatemic tumoral calcinosis. Luciferase immunoprecipitation systems revealed markedly elevated FGF23 autoantibodies without detectable FGFR1 or Klotho autoantibodies. Using an in vitro FGF23 functional assay, we found that the FGF23 autoantibodies in the patient's plasma blocked downstream signaling via the MAPK/ERK signaling pathway in a dose-dependent manner. Thus, this report describes the first case, to our knowledge, of autoimmune hyperphosphatemic tumoral calcinosis with pathogenic autoantibodies targeting FGF23. Identification of this pathophysiology extends the etiologic spectrum of hyperphosphatemic tumoral calcinosis and suggests that immunomodulatory therapy may be an effective treatment.


Asunto(s)
Autoanticuerpos , Enfermedades Autoinmunes , Calcinosis , Factores de Crecimiento de Fibroblastos , Hiperostosis Cortical Congénita , Hiperfosfatemia , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Enfermedades Autoinmunes/sangre , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Calcinosis/sangre , Calcinosis/inmunología , Calcinosis/patología , Niño , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/inmunología , Humanos , Hiperostosis Cortical Congénita/sangre , Hiperostosis Cortical Congénita/inmunología , Hiperostosis Cortical Congénita/patología , Hiperfosfatemia/sangre , Hiperfosfatemia/inmunología , Hiperfosfatemia/patología , Sistema de Señalización de MAP Quinasas/inmunología , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...