Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 919: 170872, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38354801

RESUMEN

Global change is currently impacting ecosystems and their contributions to people (i.e. ecosystem services). These impacts have consequences for societies and human well-being, especially in Africa. Historically, efforts have focused on assessing global change from a social or biophysical perspective, treating them as separate entities. Yet, our understanding of impacts to social-ecological systems remains limited, particularly in the Global South, due to a lack of data, tools, and approaches accounting for social and ecological aspects of ecosystem services. This is especially relevant for cultural ecosystem services as they are less tangible. We use a simple indicator and important provider of a multitude of cultural ecosystem services, birding, to understand how climate, biodiversity, and land use change will impact cultural ecosystem services across Africa. We explore how emerging tools and data can overcome limitations in mapping and modeling cultural ecosystem services, particularly in analyzing human preferences and behavior at large spatiotemporal scales and in data-poor regions. Leveraging crowdsourced data from eBird and using machine learning techniques we map and model recreational birding to assess the underlying social-ecological relationships and the impact of future climate and environmental change. We show that bird species richness, protected areas, accessibility, and max temperature contribute most to birding suitability across the continent. Further, we show spatial shifts in the suitability of birding under three future climate scenarios (SSP126, 370, and 585). Models suggest climate and biodiversity change will increasingly constrain the flow of birding related cultural ecosystem services across Africa. This has implications for human-nature interactions, development of countries, management of protected areas, and overall human well-being in the future. More generally, we highlight opportunities for crowdsourced datasets and machine learning to integrate non-material ecosystem services in models and thus, enhance the understanding of future impacts to ecosystem services and human well-being.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Conservación de los Recursos Naturales/métodos , Biodiversidad , Clima , África , Cambio Climático
2.
PLoS One ; 16(9): e0256498, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34469477

RESUMEN

In this study we investigate whether the increasing investment in smallholder oil palm plantations that contributes to deforestation is motivated by financial gains or other factors. We evaluate the financial viability of smallholder farmers selling fresh fruit bunches (FFBs) to intermediaries or agro-industrial companies with mills, or processing the FFBs in artisanal mills to produce palm oil. We use data collected in four oil palm production basins in Cameroon and carried out a life cycle assessment of oil palm cultivation and CPO production to understand financial gains. We use payback period (PBP), internal rate of return (IRR), benefit cost ratio (BCR) and net present value (NPV) for 1 ha of oil palm plantation over 28 years at a base discount rate of 8% to asses viability. Our results show that smallholders make more money processing their FFBs in artisanal mills to produce CPO than selling FFBs to intermediaries or agro-industrial companies with mills. The sensitivity analysis show that land ownership is the single most important parameter in the profitability of investment in palm oil cultivation and trade. In addition to land cost, smallholders suffer from borrowing at high interest rates, high field management costs, while recording low on-farm FFB/processing yields. To improve the financial viability of smallholders investing in oil palm cultivation, measures are needed to encourage them to access land, get loans at reduced interest rates, reduce the cost of field management, adopt good agricultural practices to improve on-farm FFB/processing yields, as well as to generate additional revenue from the sale of other products.


Asunto(s)
Conservación de los Recursos Naturales/economía , Granjas/economía , Frutas/economía , Inversiones en Salud , Aceite de Palma/economía , Camerún , Análisis Costo-Beneficio , Agricultores , Humanos , Modelos Económicos , Pobreza
4.
J Environ Manage ; 261: 110171, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32148262

RESUMEN

Invasive alien species (IAS) are known to pose a serious threat to biodiversity, and reduce the ability of ecosystems to provide benefits to humans. In recognition of this threat and to address the impacts of IAS, Parties to the Convention on Biological Diversity (CBD) adopted Aichi Biodiversity Target 9, which is dedicated to the control or eradication of priority IAS and the management of their introduction pathways by 2020. The achievement of Target 9 relies strongly on the commitment and ability of Parties to set ambitious national or regional targets and achive them, the availability of information and the requisite expertise on invasion biology. Now that the global community is gearing for the post-2020 Biodiversity Framework, it is time to take stock and identify opportunities to improve the performance of the African region beyond 2020. We approached this task by reviewing information on the impacts of IAS on ecosystem services in Africa, as a large proportion of Africans directly rely on ecosystem services, particularly in rural areas. Furthermore, we assessed the expertise on IAS in Africa. Our data sources were National Reports of African countries to the CBD, as well as peer-reviewed scientific literature. National Reports under the CBD provide information on measures taken to implement the Convention at country level, as well as progress towards the achievement of set targets. We found National Reports for 48 (about 90%) countries of which 73% provided feedback on IAS indicating commitment to fight IAS. However, there were few studies within peer-reviewed scientific literature looking at impacts of IAS on ecosystem services in Africa and almost half of the authors were non-Africans. This alludes to limited scientific expertise to inform and support IAS management on the continent. Both the National Reports and scientific literature showed that provisioning services were the most negatively affected by IAS. Also, more than 100 species were listed as problematic. More efforts and resources are needed to document IAS impacts across different realms (e.g. marine, terrestrial and freshwater) and for sub-regional bodies so that more integrated strategies and approaches can be developed. This information is also needed to support the development and implementation of national legislative and regulatory initiatives, as well as to report on international obligations such as the Aichi Biodiversity Targets.


Asunto(s)
Ecosistema , Especies Introducidas , África , Biodiversidad , Conservación de los Recursos Naturales , Agua Dulce , Humanos
5.
Ambio ; 49(6): 1211-1221, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31564051

RESUMEN

A horizon scan was conducted to identify emerging and intensifying issues for biodiversity conservation in South Africa over the next 5-10 years. South African biodiversity experts submitted 63 issues of which ten were identified as priorities using the Delphi method. These priority issues were then plotted along axes of social agreement and scientific certainty, to ascertain whether issues might be "simple" (amenable to solutions from science alone), "complicated" (socially agreed upon but technically complicated), "complex" (scientifically challenging and significant levels of social disagreement) or "chaotic" (high social disagreement and highly scientifically challenging). Only three of the issues were likely to be resolved by improved science alone, while the remainder require engagement with social, economic and political factors. Fortunately, none of the issues were considered chaotic. Nevertheless, strategic communication, education and engagement with the populace and policy makers were considered vital for addressing emerging issues.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Política , Sudáfrica
6.
J Environ Manage ; 92(6): 1642-50, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21334134

RESUMEN

Grasslands provide many ecosystem services required to support human well-being and are home to a diverse fauna and flora. Degradation of grasslands due to agriculture and other forms of land use threaten biodiversity and ecosystem services. Various efforts are underway around the world to stem these declines. The Grassland Programme in South Africa is one such initiative and is aimed at safeguarding both biodiversity and ecosystem services. As part of this developing programme, we identified spatial priority areas for ecosystem services, tested the effect of different target levels of ecosystem services used to identify priority areas, and evaluated whether biodiversity priority areas can be aligned with those for ecosystem services. We mapped five ecosystem services (below ground carbon storage, surface water supply, water flow regulation, soil accumulation and soil retention) and identified priority areas for individual ecosystem services and for all five services at the scale of quaternary catchments. Planning for individual ecosystem services showed that, depending on the ecosystem service of interest, between 4% and 13% of the grassland biome was required to conserve at least 40% of the soil and water services. Thirty-four percent of the biome was needed to conserve 40% of the carbon service in the grassland. Priority areas identified for five ecosystem services under three target levels (20%, 40%, 60% of the total amount) showed that between 17% and 56% of the grassland biome was needed to conserve these ecosystem services. There was moderate to high overlap between priority areas selected for ecosystem services and already-identified terrestrial and freshwater biodiversity priority areas. This level of overlap coupled with low irreplaceability values obtained when planning for individual ecosystem services makes it possible to combine biodiversity and ecosystem services in one plan using systematic conservation planning.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecosistema , Poaceae/crecimiento & desarrollo , Suelo/química , Carbono/análisis , Agua Dulce , Sudáfrica , Movimientos del Agua , Abastecimiento de Agua
7.
Conserv Biol ; 24(4): 1021-30, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20136871

RESUMEN

Global declines in biodiversity and the widespread degradation of ecosystem services have led to urgent calls to safeguard both. Responses to this urgency include calls to integrate the needs of ecosystem services and biodiversity into the design of conservation interventions. The benefits of such integration are purported to include improvements in the justification and resources available for these interventions. Nevertheless, additional costs and potential trade-offs remain poorly understood in the design of interventions that seek to conserve biodiversity and ecosystem services. We sought to investigate the synergies and trade-offs in safeguarding ecosystem services and biodiversity in South Africa's Little Karoo. We used data on three ecosystem services--carbon storage, water recharge, and fodder provision--and data on biodiversity to examine several conservation planning scenarios. First, we investigated the amount of each ecosystem service captured incidentally by a conservation plan to meet targets for biodiversity only while minimizing opportunity costs. We then examined the costs of adding targets for ecosystem services into this conservation plan. Finally, we explored trade-offs between biodiversity and ecosystem service targets at a fixed cost. At least 30% of each ecosystem service was captured incidentally when all of biodiversity targets were met. By including data on ecosystem services, we increased the amount of services captured by at least 20% for all three services without additional costs. When biodiversity targets were reduced by 8%, an extra 40% of fodder provision and water recharge were obtained and 58% of carbon could be captured for the same cost. The opportunity cost (in terms of forgone production) of safeguarding 100% of the biodiversity targets was about US$500 million. Our results showed that with a small decrease in biodiversity target achievement, substantial gains for the conservation of ecosystem services can be achieved within our biodiversity priority areas for no extra cost.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/métodos , Ecosistema , Conservación de los Recursos Naturales/estadística & datos numéricos , Modelos Teóricos , Sudáfrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...