Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS One ; 19(1): e0296971, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38252613

RESUMEN

INTRODUCTION: Salmonella is considered one of the most significant pathogens in public health since it is a bacterium that is frequently linked to food-borne illnesses in humans. Some Salmonella serovars are responsible for outbreaks that are connected to the consumption of animal products. Cattle are connected to humans through a shared environment and the food chain as a significant source of animal protein. In Nigeria, antimicrobial medications are easily accessible for use in food-producing animals. Abattoir environments are reservoirs of foodborne bacteria like non-typhoidal Salmonella enterica (NTS), that have become resistant to antibiotics used for prophylaxis or treatment in animals. This study investigated the prevalence and resistance patterns of Salmonella enterica serovars in abattoir employees, beef cattle and abattoir environments in Abuja and Lagos, Nigeria. METHODS: A total of 448 samples were collected from healthy personnel, slaughtered cattle, and abattoir environments between May and December 2020. Using Kirby-Bauer disk diffusion method, the resistance profile of NTS isolates were determined. Multidrug resistance (MDR) was considered when NTS was resistant to ≥3 antimicrobial drug classes. We performed phenotypic and genotypic characterizations of all Salmonella isolates including serotyping. Descriptive statistics were used to analyze the data. RESULTS: Twenty-seven (6%) NTS isolates were obtained. Prevalence of NTS was highest in abattoir environments (15.5%; 9/58), followed by cattle (4.8%;13/272) and abattoir employees (4.2%; 5/118). A high prevalence of resistance was observed for gentamicin (85.2%; 23/27) and tetracycline (77.8%; 21/27). Whole-genome sequencing of 22 NTS showed dissemination of aac(6')-laa (22/22), qnrB19 (1/22), fosA7 (1/22), and tetA (1/22) genes. Serovar diversity of NTS varied with source. S. Anatum, a rare serovar predominated with a prevalence of 18.2% (4/22). Chromosomal point mutations showed ParC T57S substitution in 22 NTS analyzed. Among 22 NTS, 131 mobile genetic elements (MGEs) were detected including insertion sequences (56.5%) and miniature inverted repeats (43.5%). Two integrating MGEs IS6 and IS21 were observed to carry the tetA gene + Incl-1 on the same contig in NTS originating from cattle. Rare serovars namely S. Abony and S. Stormont with MDR phenotypes recovered from cattle and abattoir environments were closely related with a pairwise distance of ≤5 SNPs. CONCLUSIONS: First report of rare serovars in Nigeria with MDR phenotypes in humans, cattle, and abattoir environments. This study demonstrates the spread of resistance in the abattoir environment possibly by MGEs and emphasizes the importance of genomic surveillance. Beef cattle may be a risk to public health because they spread a variety of rare Salmonella serovars. Therefore, encouraging hand hygiene among abattoir employees while processing beef cattle will further reduce NTS colonization in this population. This requires a One Health collaborative effort among various stakeholders in human health, animal health, and environmental health.


Asunto(s)
Bagres , Salmonella enterica , Fiebre Tifoidea , Humanos , Bovinos , Animales , Serogrupo , Salmonella enterica/genética , Nigeria/epidemiología , Mataderos , Antibacterianos/farmacología
2.
Lancet Microbe ; 4(12): e1040-e1046, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37977161

RESUMEN

Integration of genomic technologies into routine antimicrobial resistance (AMR) surveillance in health-care facilities has the potential to generate rapid, actionable information for patient management and inform infection prevention and control measures in near real time. However, substantial challenges limit the implementation of genomics for AMR surveillance in clinical settings. Through a workshop series and online consultation, international experts from across the AMR and pathogen genomics fields convened to review the evidence base underpinning the use of genomics for AMR surveillance in a range of settings. Here, we summarise the identified challenges and potential benefits of genomic AMR surveillance in health-care settings, and outline the recommendations of the working group to realise this potential. These recommendations include the definition of viable and cost-effective use cases for genomic AMR surveillance, strengthening training competencies (particularly in bioinformatics), and building capacity at local, national, and regional levels using hub and spoke models.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Humanos , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Genómica , Instituciones de Salud , Biología Computacional
3.
Lancet Microbe ; 4(12): e1047-e1055, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37977162

RESUMEN

Historically, epidemiological investigation and surveillance for bacterial antimicrobial resistance (AMR) has relied on low-resolution isolate-based phenotypic analyses undertaken at local and national reference laboratories. Genomic sequencing has the potential to provide a far more high-resolution picture of AMR evolution and transmission, and is already beginning to revolutionise how public health surveillance networks monitor and tackle bacterial AMR. However, the routine integration of genomics in surveillance pipelines still has considerable barriers to overcome. In 2022, a workshop series and online consultation brought together international experts in AMR and pathogen genomics to assess the status of genomic applications for AMR surveillance in a range of settings. Here we focus on discussions around the use of genomics for public health and international AMR surveillance, noting the potential advantages of, and barriers to, implementation, and proposing recommendations from the working group to help to drive the adoption of genomics in public health AMR surveillance. These recommendations include the need to build capacity for genome sequencing and analysis, harmonising and standardising surveillance systems, developing equitable data sharing and governance frameworks, and strengthening interactions and relationships among stakeholders at multiple levels.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Humanos , Salud Pública , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Genómica , Antiinfecciosos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/epidemiología , Infecciones Bacterianas/microbiología , Bacterias
4.
Lancet Microbe ; 4(12): e1035-e1039, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37977164

RESUMEN

Nearly a century after the beginning of the antibiotic era, which has been associated with unparalleled improvements in human health and reductions in mortality associated with infection, the dwindling pipeline for new antibiotic classes coupled with the inevitable spread of antimicrobial resistance (AMR) poses a major global challenge. Historically, surveillance of bacteria with AMR typically relied on phenotypic analysis of isolates taken from infected individuals, which provides only a low-resolution view of the epidemiology behind an individual infection or wider outbreak. Recent years have seen increasing adoption of powerful new genomic technologies with the potential to revolutionise AMR surveillance by providing a high-resolution picture of the AMR profile of the bacteria causing infections and providing real-time actionable information for treating and preventing infection. However, many barriers remain to be overcome before genomic technologies can be adopted as a standard part of routine AMR surveillance around the world. Accordingly, the Surveillance and Epidemiology of Drug-resistant Infections Consortium convened an expert working group to assess the benefits and challenges of using genomics for AMR surveillance. In this Series, we detail these discussions and provide recommendations from the working group that can help to realise the massive potential benefits for genomics in surveillance of AMR.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Infecciones Bacterianas/tratamiento farmacológico , Genómica
5.
Lancet Microbe ; 4(12): e1056-e1062, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37977165

RESUMEN

The intersection of human, animal, and ecosystem health at One Health interfaces is recognised as being of key importance in the evolution and spread of antimicrobial resistance (AMR) and represents an important, and yet rarely realised opportunity to undertake vital AMR surveillance. A working group of international experts in pathogen genomics, AMR, and One Health convened to take part in a workshop series and online consultation focused on the opportunities and challenges facing genomic AMR surveillance in a range of settings. Here we outline the working group's discussion of the potential utility, advantages of, and barriers to, the implementation of genomic AMR surveillance at One Health interfaces and propose a series of recommendations for addressing these challenges. Embedding AMR surveillance at One Health interfaces will require the development of clear beneficial use cases, especially in low-income and middle-income countries. Evidence of directionality, risks to human and animal health, and potential trade implications were also identified by the working group as key issues. Addressing these challenges will be vital to enable genomic surveillance technology to reach its full potential for assessing the risk of transmission of AMR between the environment, animals, and humans at One Health interfaces.


Asunto(s)
Antibacterianos , Salud Única , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Ecosistema , Genómica
6.
Heliyon ; 9(7): e18299, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37539285

RESUMEN

Here we report a new polyhydroxylated triterpene, 2ß,6ß,21α-trihydroxyfriedelan-3-one (4) isolated from the root and stem bark of Dichapetalum albidum A. Chev (Dichapetalaceae), along with six known triterpenoids (1-3, 5, 6, 8), sitosterol-3ß-O-D-glucopyranoside (9), a dipeptide (7), and a tyramine derivative of coumaric acid (10). Friedelan-3-one (2) showed an antimicrobial activity (IC50) of 11.40 µg/mL against Bacillus cereus, while friedelan-3α-ol (1) gave an IC50 of 13.07 µg/mL against Staphylococcus aureus with ampicillin reference standard of 19.52 µg/mL and 0.30 µg/mL respectively. 3ß-Acetyl tormentic acid (5) showed an IC50 of 12.50 µg/mL against Trypanosoma brucei brucei and sitosterol-3ß-O-d-glucopyranoside (9) showed an IC50 of 5.06 µg/mL against Leishmania donovani with respective reference standards of IC50 5.02 µg/mL for suramin and IC50 0.27 µg/mL for amphotericin B. Molecular docking of the isolated compounds on the enzyme glucose-6-phosphate dehydrogenase (G6PDH) suggested 3ß-acetyl tormentic acid (5) and sitosterol-3ß-O-D-glucopyranoside (9) as plausible inhibitors of the enzyme in accordance with the experimental biological results observed.

7.
Front Microbiol ; 14: 1163450, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455743

RESUMEN

Introduction: Gonorrhoea is a major public health concern. With the global emergence and spread of resistance to last-line antibiotic treatment options, gonorrhoea threatens to be untreatable in the future. Therefore, this study performed whole genome characterization of Neisseria gonorrhoeae collected in Ghana to identify lineages of circulating strains as well as their phenotypic and genotypic antimicrobial resistance (AMR) profiles. Methods: Whole genome sequencing (WGS) was performed on 56 isolates using both the Oxford Nanopore MinION and Illumina MiSeq sequencing platforms. The Comprehensive Antimicrobial Resistance Database (CARD) and PUBMLST.org/neisseria databases were used to catalogue chromosomal and plasmid genes implicated in AMR. The core genome multi-locus sequence typing (cgMLST) approach was used for comparative genomics analysis. Results and Discussion: In vitro resistance measured by the E-test method revealed 100%, 91.0% and 85.7% resistance to tetracycline, penicillin and ciprofloxacin, respectively. A total of 22 sequence types (STs) were identified by multilocus sequence typing (MLST), with ST-14422 (n = 10), ST-1927 (n = 8) and ST-11210 (n = 7) being the most prevalent. Six novel STs were also identified (ST-15634, 15636-15639 and 15641). All isolates harboured chromosomal AMR determinants that confer resistance to beta-lactam antimicrobials and tetracycline. A single cefixime-resistant strain, that belongs to N. gonorrhoeae multiantigen sequence type (NG-MAST) ST1407, a type associated with widespread cephalosporin resistance was identified. Neisseria gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR), identified 29 unique sequence types, with ST-464 (n = 8) and the novel ST-3366 (n = 8) being the most prevalent. Notably, 20 of the 29 STs were novel, indicative of the unique nature of molecular AMR determinants in the Ghanaian strains. Plasmids were highly prevalent: pTetM and pblaTEM were found in 96% and 92% of isolates, respectively. The TEM-135 allele, which is an amino acid change away from producing a stable extended-spectrum ß-lactamase that could result in complete cephalosporin resistance, was identified in 28.5% of the isolates. Using WGS, we characterized N. gonorrhoeae strains from Ghana, giving a snapshot of the current state of gonococcal AMR in the country and highlighting the need for constant genomic surveillance.

8.
Afr J Lab Med ; 12(1): 2053, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293314

RESUMEN

Background: Antimicrobial resistance (AMR) surveillance plays an important role in early detection of resistant strains of pathogens and informs treatments decisions at local, regional and national levels. In 2017, Tanzania developed a One Health AMR Surveillance Framework to guide establishment of AMR surveillance systems in the human and animal sectors. Aim: We reviewed AMR surveillance studies in Tanzania to document progress towards establishing an AMR surveillance system and determine effective strengthening strategies. Methods: We conducted a literature review on AMR studies conducted in Tanzania by searching Google Scholar, PubMed, and the websites of the Tanzania Ministry of Health and the World Health Organization for articles written in English and published from January 2012 to March 2021 using relevant search terms. Additionally, we reviewed applicable guidelines, plans, and reports from the Tanzanian Ministry of Health. Results: We reviewed 10 articles on AMR in Tanzania, where studies were conducted at hospitals in seven of Tanzania's 26 regions between 2012 and 2019. Nine AMR sentinel sites had been established, and there was suitable and clear coordination under 'One Health'. However, sharing of surveillance data between sectors had yet to be strengthened. Most studies documented high resistance rates of Gram-negative bacteria to third-generation cephalosporins. There were few laboratory staff who were well trained on AMR. Conclusion: Important progress has been made in establishing a useful, reliable AMR surveillance system. Challenges include a need to develop, implement and build investment case studies for the sustainability of AMR surveillance in Tanzania and ensure proper use of third-generation cephalosporins. What this study adds: This article adds to the knowledge base of AMR trends in Tanzania and progress made in the implementation of AMR surveillance in human health sector as a contribution to the global AMR initiatives to reduce AMR burden worldwide. It has highlighted key gaps that need policy and implementation level attention.

9.
Antibiotics (Basel) ; 12(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37370334

RESUMEN

Beta-lactamase (ß-lactamase)-producing Gram-negative bacteria (GNB) are of public health concern due to their resistance to routine antimicrobials. We investigated the antimicrobial resistance and occurrence of carbapenemases, extended-spectrum ß-lactamases (ESBLs) and AmpCs among GNB from clinical sources. GNB were identified using matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDITOF-MS). Antimicrobial susceptibility testing was performed via Kirby-Bauer disk diffusion and a microscan autoSCAN system. ß-lactamase genes were determined via multiplex polymerase chain reactions. Of the 181 archived GNB analyzed, Escherichia coli and Klebsiella pneumoniae constituted 46% (n = 83) and 17% (n = 30), respectively. Resistance to ampicillin (51%), third-generation cephalosporins (21%), and ertapenem (21%) was observed among the isolates, with 44% being multi-drug resistant (MDR). ß-lactamase genes such as AmpCs ((blaFOX-M (64%) and blaDHA-M and blaEDC-M (27%)), ESBLs ((blaCTX-M (81%), other ß-lactamase genes blaTEM (73%) and blaSHV (27%)) and carbapenemase ((blaOXA-48 (60%) and blaNDM and blaKPC (40%)) were also detected. One K. pneumoniae co-harbored AmpC (blaFOX-M and blaEBC-M) and carbapenemase (blaKPC and blaOXA-48) genes. blaOXA-48 gene was detected in one carbapenem-resistant Acinetobacter baumannii. Overall, isolates were resistant to a wide range of antimicrobials including last-line treatment options. This underpins the need for continuous surveillance for effective management of infections caused by these pathogens in our settings.

10.
Int J Food Microbiol ; 396: 110195, 2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37030061

RESUMEN

This study sought to investigate microbial quality and antimicrobial resistance of bacteria species from Ready-to-Eat (RTE) food, water, and vendor palm swab samples. Between 2019 and 2020, RTE food, water and vendor palm swab samples were collected from food vending sites in Accra, Ghana. Samples were cultured and confirmed using the Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF). Antimicrobial susceptibility testing (AST) was conducted using disk diffusion method. Beta-lactamase and Diarrheagenic Escherichia coli (DEC) genes were determined using Polymerase Chain Reaction (PCR). Total plate count (TPC) and Total coliform count (TCC) were performed on food and water samples. In total, 179 RTE food, 72 water and 10 vendor palm swab samples were collected. Enterobacter spp. (16.8 %), Citrobacter spp. (10.1 %), Enterococcus faecalis (7.8 %), Pseudomonas spp. (6.7 %) and Klebsiella pneumoniae (4.0 %) occurred in food. Isolates from water and palm were Klebsiella pneumoniae (20.8 %), Aeromonas spp. (16.7 %) and Enterobacter cloacae (11.1 %). Resistance to Amoxicillin-clavulanate, Tetracycline, Azithromycin, Sulfamethoxazole-trimethoprim, and Nitrofurantoin were common among Enterobacterales. High mean TPC and TCC showed in some RTE food and different water types used in vending depicting their unsafe condition for consumption and usage. The blaSHV and blaTEM genes were present in some Enterobacterales from food and water. The lt gene was identified in two food samples. AMR organisms associated with nosocomial infections in the samples investigated, calls for continuous surveillance in the food industry in Ghana. Also, the unsafe outcome of RTE food and water depicts the need for the enforcement of Ghana's food safety laws.


Asunto(s)
Antibacterianos , Microbiología de Alimentos , Antibacterianos/farmacología , Ghana , Farmacorresistencia Bacteriana/genética , Bacterias , beta-Lactamasas , Escherichia coli , Pruebas de Sensibilidad Microbiana
11.
Emerg Infect Dis ; 29(4): 862-865, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958011

RESUMEN

To assess dynamics of SARS-CoV-2 in Greater Accra Region, Ghana, we analyzed SARS-CoV-2 genomic sequences from persons in the community and returning from international travel. The Accra Metropolitan District was a major origin of virus spread to other districts and should be a primary focus for interventions against future infectious disease outbreaks.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Ghana/epidemiología , Evolución Biológica , Brotes de Enfermedades
12.
Antibiotics (Basel) ; 12(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36830166

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) in Gram-negative bacteria-causing bloodstream infections (BSIs), such as Klebsiella pneumoniae and non-typhoidal Salmonella (NTS), is a major public health concern. Nonetheless, AMR surveillance remains scarce in sub-Saharan Africa, where BSI treatment is largely empirical. The aim of the study was to determine the distribution and AMR patterns of BSI-causing NTS, K. pneumoniae, and other Gram-negative bacteria in Ghana. METHODS: A cross-sectional study was conducted between April and December 2021 at eleven sentinel health facilities across Ghana as part of a pilot study on the feasibility and implementation of the human sector AMR surveillance harmonized protocol in sub-Saharan Africa. Gram-negative bacteria recovered from blood specimens of febrile patients were identified using MALDI-TOF and evaluated for antimicrobial resistance using the BD Phoenix M50 analyzer and Kirby-Bauer disc diffusion. The Department of Medical Microbiology at the University of Ghana served as the reference laboratory. RESULTS: Out of 334 Gram-negative blood isolates, there were 18 (5.4%) NTS, 85 (25.5%) K. pneumoniae, 88 (26.4%) Escherichia coli, 40 (12.0%) Acinetobacter baumannii, 25 (7.5%) Pseudomonas aeruginosa, and 77 (23.1%) other Gram-negative bacteria. As a composite, the isolates displayed high resistance to the antibiotics tested-amoxicillin (89.3%), tetracycline (76.1%), trimethoprim-sulfamethoxazole (71.5%), and chloramphenicol (59.7%). Resistance to third-generation cephalosporins [ceftriaxone (73.7%), cefotaxime (77.8%), and ceftazidime (56.3%)] and fluoroquinolones [ciprofloxacin (55.3%)] was also high; 88% of the isolates were multidrug resistant, and the rate of extended-spectrum beta-lactamase (ESBL) production was 44.6%. Antibiotic resistance in K. pneumoniae followed the pattern of all Gram-negative isolates. Antibiotic resistance was lower in NTS blood isolates, ranging between 16.7-38.9% resistance to the tested antibiotics. Resistance rates of 38.9%, 22.2%, and 27.8% were found for cefotaxime, ceftriaxone, and ceftazidime, respectively, and 27.8% and 23.8% for ciprofloxacin and azithromycin, respectively, which are used in the treatment of invasive NTS. The prevalence of multidrug resistance in NTS isolates was 38.9%. CONCLUSIONS: Multicenter AMR surveillance of Gram-negative blood isolates from febrile patients was well-received in Ghana, and the implementation of a harmonized protocol was feasible. High resistance and multidrug resistance to first- or second-choice antibiotics, including penicillins, third-generation cephalosporins, and fluoroquinolones, were found, implying that these antibiotics might have limited effectiveness in BSI treatment in the country. Continuation of AMR surveillance in Gram-negative blood isolates is essential for a better understanding of the extent of AMR in these pathogens and to guide clinical practice and policymaking.

13.
Microbiol Resour Announc ; 12(1): e0089322, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36453948

RESUMEN

Whole-genome sequence data for clinically relevant Gram-negative bacteria from the African continent are scarce. In this report, we present the draft genome sequence data and antibiograms of four species, namely, Kerstersia gyiorum, Providencia vermicola, Providencia stuartii, and Alcaligenes faecalis, that were recovered from human soft tissue biopsy samples.

14.
Front Microbiol ; 14: 1254896, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38192291

RESUMEN

Introduction: Enterococcus spp. have gradually evolved from commensals to causing life-threatening hospital-acquired infections globally due to their inherent antimicrobial resistance ability and virulence potential. Enterococcus spp. recovered from livestock and raw meat samples were characterized using antimicrobial susceptibility testing and whole-genome sequencing. Materials and methods: Isolates were confirmed using the MALDI-ToF mass spectrometer, and antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method. Whole genome sequencing was performed on isolates resistant to two or more antibiotics. Bioinformatics analysis was performed to determine sequence types, resistance and virulence gene content and evolutionary relationships between isolates from meat and livestock samples, and other enterococci genomes curated by PATRIC. eBURST analysis was used to assign genomes to clonal complexes. Results: Enterococcus spp. were predominantly E. faecalis (96/236; 41%) and E. faecium (89/236; 38%). Overall, isolates showed resistance to erythromycin (78/236; 33%), tetracycline (71/236; 30%), ciprofloxacin (20/236; 8%), chloramphenicol (12/236; 5%), linezolid (7/236; 3%), ampicillin (4/236; 2%) and vancomycin (1/236, 0.4%). Resistance to two or more antimicrobial agents was detected among 17% (n = 40) Enterococcus spp. Resistance genes for streptogramins [lsa(A), lsa(E), msr(C)], aminoglycosides [aac(6')-Ii, aph(3')-III, ant(6)-Ia, aac(6')-aph(2″), str], amphenicol [cat], macrolides [erm(B), erm(T), msr(C)], tetracyclines [tet(M), tet(L), tet(S)] and lincosamides [lsa(A), lsa(E), lnu(B)] were detected among the isolates. Genes for biofilm formation, adhesins, sex pheromones, cytolysins, hyaluronidase, oxidative stress resistance, quorum-sensing and anti-phagocytic activity were also identified. Potential plasmids with replicon sequences (rep1, rep2, repUS43, repUS47, rep9a, rep9b) and other mobile genetic elements (Tn917, cn_5536_ISEnfa1, Tn6009, ISEnfa1, ISEfa10) were detected. Clinically relevant E. faecium ST32 and ST416 clones were identified in meat samples. Conclusion: The occurrence of antimicrobial-resistant Enterococcus spp. in livestock and raw meat samples, carrying multiple resistance and virulence genes, including known clones associated with hospital-acquired infections, underscores the critical need for employing robust tools like whole genome sequencing. Such tools provide detailed data essential for ongoing surveillance efforts aimed at addressing the challenge of antimicrobial resistance with a focus on one health.

15.
PLoS One ; 17(12): e0279715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36584159

RESUMEN

AIM: To describe the occurrence of carbapenem resistance among multidrug-resistant (MDR) Escherichia coli and Klebsiella pneumoniae isolated from clinical specimens in Accra using phenotypic and genotypic methods. METHODOLOGY: The study was cross-sectional, involving 144 clinical MDR E. coli and K. pneumoniae isolates recovered from the Central Laboratory of the Korle Bu Teaching Hospital (KBTH). The isolates were re-cultured bacteriologically, identified using standard biochemical tests, and subjected to antibiotic susceptibility testing using the Kirby-Bauer method. Carbapenem resistance was determined based on imipenem, meropenem, and ertapenem zones of inhibition, as well as minimum inhibitory concentrations (MICs). Carbapenemase production was determined phenotypically by modified Hodge test (MHT) and modified carbapenem inactivation method (mCIM), and genotypically with multiplex PCR targeting the blaKPC, blaIMP, blaNDM, blaVIM, and blaOXA-48 genes. RESULTS: Of the 144 MDR isolates, 69.4% were E. coli, and 30.6% were K. pneumoniae. The distribution of antimicrobial resistance rates among them was ampicillin (97.2%), cefuroxime (93.1%), sulfamethoxazole-trimethoprim (86.8%), tetracycline (85.4%), cefotaxime and cefpodoxime (77.1% each), amoxicillin-clavulanate (75%), ceftriaxone (73.6%), ciprofloxacin (70.8%), levofloxacin (66.0%), cefepime (65.3%), ceftazidime (64.6%), gentamicin (48.6), piperacillin-tazobactam (40.3%), cefoxitin (14.6%), amikacin (13.9%), ertapenem and meropenem (5.6% each), and imipenem (2.8%). In total, 5.6% (8/144) of them were carbapenem-resistant (carbapenem MIC range = 0.094-32.0 µg/ml), with 75% (6/8) of these testing positive by the phenotypic tests and 62.5% (5/8) by the genotypic test (of which 80% [4/5] carried blaOXA-48 and 20% (1/5) blaNDM). The blaVIM, blaIMP, and blaKPC genes were not detected. CONCLUSION: Although the rates of antibiotic resistance among the isolates were high, the prevalence of carbapenemase producers was low. The finding of blaOXA-48 and blaNDM warrants upscaling of antimicrobial resistance surveillance programmes and fortification of infection prevention and control programmes in the country.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Klebsiella pneumoniae , Meropenem , Ertapenem , Escherichia coli , Ghana/epidemiología , Estudios Transversales , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Carbapenémicos/farmacología , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Imipenem/farmacología , Pruebas de Sensibilidad Microbiana
16.
JAC Antimicrob Resist ; 4(6): dlac113, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36349243

RESUMEN

Background: Reports suggest that fluoroquinolone (FQ)-resistant and ESBL-producing rectal flora are associated with infectious complications in men undergoing transrectal ultrasound-guided prostate needle biopsy (TRUS-B). Objectives: We investigated the relationship between carriage of FQ-resistant and ESBL-producing Escherichia coli and Klebsiella pneumoniae complex of the rectal flora, and the 30 day incidence rate of post-TRUS-B infectious complications. Methods: From 1 January 2018 to 30 April 2019, rectal swabs of 361 patients were cultured pre-TRUS-B for FQ-resistant and ESBL-producing flora. Patients were followed up for 30 days for infectious complications post-biopsy. Multivariable logistic regression analyses were used to identify risk factors. Results: Overall, 86.4% (n = 312/361) and 62.6% (n = 226/361) of patients carried FQ-resistant and ESBL-producing E. coli and K. pneumoniae complex, respectively. Approximately 60% (n = 289/483) of the FQ-resistant and 66.0% (n = 202/306) of the ESBL-positive isolates exhibited in vitro resistance to the pre-biopsy prophylactic antibiotic regimen of levofloxacin and gentamicin. Amikacin and meropenem were the most effective antibiotics against the MDR rectal E. coli and K. pneumoniae complex (78.7% and 84.3%, respectively). The 30 day incidence rate for post-biopsy infections was 3.1% (n = 11/361), with an overall high probability (96.9%) of staying free of infections within the 30 day period post-TRUS-B. Antibiotic use in the previous 3 months was a risk factor for rectal carriage of FQ-resistant and ESBL-positive isolates. Rectal colonization by ESBL-positive E. coli and K. pneumoniae complex comprised an independent risk factor for post-biopsy infectious complications. Conclusions: The findings suggest that a change in prophylactic antibiotics to a more targeted regimen may be warranted in our institution.

17.
BMC Microbiol ; 22(1): 180, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864456

RESUMEN

BACKGROUND: The emergence of antimicrobial resistant bacteria in food producing animals is of growing concern to food safety and health. Staphylococci are common inhabitants of skin and mucous membranes in humans and animals. Infections involving antibiotic resistant staphylococci are associated with increased morbidity and mortality, with notable economic consequences. Livestock farms may enable cross-species transfer of antibiotic resistant staphylococci. The aim of the study was to investigate antimicrobial resistance patterns of staphylococci isolated from livestock and farm attendants in Northern Ghana using phenotypic and genotypic methods. Antimicrobial susceptibility testing was performed on staphylococci recovered from livestock and farm attendants and isolates resistant to cefoxitin were investigated using whole genome sequencing. RESULTS: One hundred and fifty-two staphylococci comprising S. sciuri (80%; n = 121), S. simulans (5%; n = 8), S. epidermidis (4%; n = 6), S. chromogens (3%; n = 4), S. aureus (2%; n = 3), S. haemolyticus (1%; n = 2), S. xylosus (1%; n = 2), S. cohnii (1%; n = 2), S. condimenti (1%; n = 2), S. hominis (1%; n = 1) and S. arlettae (1%; n = 1) were identified. The isolates showed resistance to penicillin (89%; n = 135), clindamycin (67%; n = 102), cefoxitin (19%; n = 29), tetracycline (15%; n = 22) and erythromycin (11%; n = 16) but showed high susceptibility to gentamicin (96%; n = 146), sulphamethoxazole/trimethoprim (98%; n = 149) and rifampicin (99%; n = 151). All staphylococci were susceptible to linezolid and amikacin. Carriage of multiple resistance genes was common among the staphylococcal isolates. Genome sequencing of methicillin (cefoxitin) resistant staphylococci (MRS) isolates revealed majority of S. sciuri (93%, n = 27) carrying mecA1 (which encodes for beta-lactam resistance) and the sal(A) gene, responsible for resistance to lincosamide and streptogramin. Most of the MRS isolates were recovered from livestock. CONCLUSION: The study provides insights into the genomic content of MRS from farm attendants and livestock in Ghana and highlights the importance of using whole-genome sequencing to investigate such opportunistic pathogens. The finding of multi-drug resistant staphylococci such as S. sciuri carrying multiple resistant genes is of public health concern as they could pose a challenge for treatment of life-threatening infections that they may cause.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus , Animales , Antibacterianos/farmacología , Cefoxitina , Farmacorresistencia Bacteriana/genética , Granjas , Genómica , Ghana , Humanos , Ganado , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus , Staphylococcus epidermidis
18.
Front Microbiol ; 13: 860436, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35591993

RESUMEN

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of hospital-associated (HA) and community-associated (CA) infections globally. The multi-drug resistant nature of this pathogen and its capacity to cause outbreaks in hospital and community settings highlight the need for effective interventions, including its surveillance for prevention and control. This study provides an update on the clonal distribution of MRSA in Africa. Methods: A systematic review was conducted by screening for eligible English, French, and Arabic articles from November 2014 to December 2020, using six electronic databases (PubMed, EBSCOhost, Web of Science, Scopus, African Journals Online, and Google Scholar). Data were retrieved and analyzed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines (registered at PROSPERO: CRD42021277238). Genotyping data was based primarily on multilocus sequence types (STs) and Staphylococcal Cassette Chromosome mec (SCCmec) types. We utilized the Phyloviz algorithm in the cluster analysis and categorization of the MRSA STs into various clonal complexes (CCs). Results: We identified 65 studies and 26 publications from 16 of 54 (30%) African countries that provided sufficient genotyping data. MRSA with diverse staphylococcal protein A (spa) and SCCmec types in CC5 and CC8 were reported across the continent. The ST5-IV [2B] and ST8-IV [2B] were dominant clones in Angola and the Democratic Republic of Congo (DRC), respectively. Also, ST88-IV [2B] was widely distributed across the continent, particularly in three Portuguese-speaking countries (Angola, Cape Verde, and São Tomé and Príncipe). The ST80-IV [2B] was described in Algeria and Egypt, while the HA-ST239/ST241-III [3A] was only identified in Egypt, Ghana, Kenya, and South Africa. ST152-MRSA was documented in the DRC, Kenya, Nigeria, and South Africa. Panton-Valentine leukocidin (PVL)-positive MRSA was observed in several CCs across the continent. The median prevalence of PVL-positive MRSA was 33% (ranged from 0 to 77%; n = 15). Conclusion: We observed an increase in the distribution of ST1, ST22, and ST152, but a decline of ST239/241 in Africa. Data on MRSA clones in Africa is still limited. There is a need to strengthen genomic surveillance capacity based on a "One-Health" strategy to prevent and control MRSA in Africa.

19.
PLoS One ; 17(5): e0268991, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35617316

RESUMEN

INTRODUCTION: Diarrhoea accounts for high morbidity and mortality in children and adults worldwide. Extended Spectrum Beta-Lactamase-Producing Enterobacteriaceae (ESBL-PE) and Diarrhoeagenic Escherichia coli (DEC) contribute to prolonged hospitalization because of their resistance and virulence properties aiding in the spread of diarrhoeal disease and delayed treatment. AIM: To determine DEC and the antimicrobial resistance of ESBL-PE isolated among diarrhoea patients attending two health facilities in Ghana. METHODS: Stool samples were collected from 122 diarrhoeal patients who attended Maamobi General Hospital and Kaneshie Polyclinic between January 2019 and March 2020. Identification of bacteria was performed by using the Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Using disk diffusion, antimicrobial susceptibility testing (AST) was conducted and interpreted according to the 2018 CLSI guidelines. Detection of ESBL and DEC genes was performed using Polymerase chain reaction (PCR). RESULTS: A total of 80.3% (98/122) Enterobacteriaceae was recovered from the patients in the study with an overall ESBL occurrence of 20.4% (20/98), predominantly among E. coli showed 13.2% (10/76), Klebsiella pneumoniae,35.7%(5/14) and Proteus mirabilis, 57.1%(4/7). Among the ESBL genes detected, blaTEM (n = 14) was common, followed by blaCTX-M (n = 13) and blaSHV (n = 4). Thirty-four E. coli isolates possessed the heat labile (Lt) gene of Enterotoxigenic E. coli (ETEC). CONCLUSION: Our findings confirm the existence of DEC and the antimicrobial resistance patterns of ESBL-PE among stool isolates, limiting the options of commonly used drugs for diarrhoeal treatment in Ghana. Routine laboratory testing in health care facilities and strengthened surveillance systems among hospital networks are encouraged for a better understanding of their epidemiology and clinical implications.


Asunto(s)
Escherichia coli , beta-Lactamasas , Adulto , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Niño , Diarrea/tratamiento farmacológico , Diarrea/epidemiología , Farmacorresistencia Bacteriana/genética , Enterobacteriaceae , Ghana/epidemiología , Hospitales , Humanos , beta-Lactamasas/genética
20.
Front Cell Infect Microbiol ; 12: 869314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463650

RESUMEN

Introduction: Beef cattle, one of the food-producing animals, are linked to humans through a shared environment and the food chain as a major source of animal protein. Antimicrobial drugs are readily accessible for use in food animal production in Nigeria. Beef cattle and abattoir environments harbor pathogenic bacteria such as Escherichia coli (E. coli) which have developed resistance to antimicrobial agents used for prophylaxis or treatment. This study investigated the zoonotic transmission of extended-spectrum beta-lactamase-producing E. coli (ESBL-EC) among humans, beef cattle, and abattoir environments in Abuja and Lagos, Nigeria. Materials and Methods: We conducted a cross-sectional study among abattoir workers, beef cattle, and abattoir environments in Abuja and Lagos. Stool, cecal, and environmental samples were collected from apparently healthy workers, slaughtered cattle, and abattoir environments from May to December 2020. Data were collected electronically using open data kit app installed on a mobile phone. Antimicrobial susceptibility patterns were determined using the Kirby-Bauer disk diffusion method against a panel of 16 antimicrobial agents. Phenotypic and genotypic characterizations of the isolates were conducted. Data were analyzed with descriptive statistics. Results: From 21.7% (n = 97) of 448 samples, ESBL-EC were isolated and further characterized. Prevalence of ESBL-EC was highest in cattle (45.4%; n = 44), abattoir workers (41.2%; n = 40), and abattoir environment (13.4%; n = 13). Whole-genome sequencing of ESBL-EC showed dissemination of blaCTX-M-15 (90.7%; n = 88); blaCTX-M-14 (5.2%; n = 5); and blaCTX-M-55 (2.1%; n = 2) genes. The blaCTX-M-15 coexisted with blaCTX-M-14 and blaTEM-1 genes in 2.1% (n = 2) and 39.2% (n = 38) of the isolates, respectively. The presence of blaCTX-M-14 and blaCTX-M-15 genes was significantly associated with isolates originating from abattoir workers when compared with beef cattle isolates (p = 0.05; p < 0.01). The most prevalent sequence types (ST) were ST10 (n = 11), ST215 (n = 7), ST4684 (n = 7), and ST2178 (n = 6). ESBL-EC strain (ST205/B1) harbored mcr-1.1 and blaCTX-M15 and was isolated from a worker at Lagos abattoir. In 91 ESBL-EC isolates, 219 mobile genetic elements (MGEs) harbored resistance genes out of which ß-lactam genes were carried on 64 different MGEs. Isolates showed equal distribution of insertion sequences and miniature inverted repeats although only a few composite transposons were detected (humans n = 12; cattle n = 9; environment n = 4). Two isolates of human and cattle origin (ST46/A) harboring ESBL genes and carried by MGEs were clonally related. Conclusions: This is the first report of blaCTX-M-55 gene in humans and cattle in Nigeria. This study demonstrates the horizontal transfer of ESBL genes possibly by MGEs and buttresses the importance of genomic surveillance. Healthcare workers should be sensitized that people working closely with cattle or in abattoir environments are a high-risk group for fecal carriage of ESBL-EC when compared with the general population.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Mataderos , Animales , Antibacterianos/farmacología , Zoonosis Bacterianas/genética , Zoonosis Bacterianas/metabolismo , Zoonosis Bacterianas/transmisión , Bovinos , Estudios Transversales , Escherichia coli/metabolismo , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/transmisión , Infecciones por Escherichia coli/veterinaria , Humanos , Nigeria/epidemiología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...