Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Chem ; 6(1): 179, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644120

RESUMEN

Cardiovascular diseases are the leading cause of death worldwide and are not typically diagnosed until the disease has manifested. Endothelial dysfunction is an early, reversible precursor in the irreversible development of cardiovascular diseases and is characterized by a decrease in nitric oxide production. We believe that more reliable and reproducible methods are necessary for the detection of endothelial dysfunction. Both nitric oxide and calcium play important roles in the endothelial function. Here we review different types of molecular sensors used in biological settings. Next, we review the current nitric oxide and calcium sensors available. Finally, we review methods for using both sensors for the detection of endothelial dysfunction.

2.
Front Immunol ; 14: 1118624, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761747

RESUMEN

The vasculature system plays a critical role in inflammation processes in the body. Vascular inflammatory mechanisms are characterized by disruption of blood vessel wall permeability together with increased immune cell recruitment and migration. There is a critical need to develop models that fully recapitulate changes in vascular barrier permeability in response to inflammatory conditions. We developed a scalable platform for parallel measurements of trans epithelial electrical resistance (TEER) in 64 perfused microfluidic HUVEC tubules under inflammatory conditions. Over 250 tubules where exposed to Tumor necrosis factor alpha (TNFα) and interferon gamma (INF-γ) or human peripheral blood mononuclear cells. The inflammatory response was quantified based on changes TEER and expression of ICAM and VE-cadherin. We observed changes in barrier function in the presence of both inflammatory cytokines and human peripheral blood mononuclear cells, characterized by decreased TEER values, increase in ICAM expression as well changes in endothelial morphology. OrganoPlate 3-lane64 based HUVEC tubules provide a valuable tool for inflammatory studies in an automation compatible manner. Continuous TEER measurements enable long term, sensitive assays for barrier studies. We propose the use of our platform as a powerful tool for modelling endothelial inflammation in combination with immune cell interaction that can be used to screen targets and drugs to treat chronic vascular inflammation.


Asunto(s)
Inflamación , Leucocitos Mononucleares , Humanos , Impedancia Eléctrica , Movimiento Celular , Dispositivos Laboratorio en un Chip
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...