Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(9): 3746-3751, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808760

RESUMEN

Antimicrobial peptides, in particular α-defensins expressed by Paneth cells, control microbiota composition and play a key role in intestinal barrier function and homeostasis. Dynamic conditions in the local microenvironment, such as pH and redox potential, significantly affect the antimicrobial spectrum. In contrast to oxidized peptides, some reduced defensins exhibit increased vulnerability to proteolytic degradation. In this report, we investigated the susceptibility of Paneth-cell-specific human α-defensin 5 (HD-5) and -6 (HD-6) to intestinal proteases using natural human duodenal fluid. We systematically assessed proteolytic degradation using liquid chromatography-mass spectrometry and identified several active defensin fragments capable of impacting bacterial growth of both commensal and pathogenic origins. Of note, incubation of mucus with HD-5 resulted in 255-8,000 new antimicrobial combinations. In contrast, HD-6 remained stable with consistent preserved nanonet formation. In vivo studies demonstrated proof of concept that a HD-5 fragment shifted microbiota composition (e.g., increases of Akkermansia sp.) without decreasing diversity. Our data support the concept that secretion of host peptides results in an environmentally dependent increase of antimicrobial defense by clustering in active peptide fragments. This complex clustering mechanism dramatically increases the host's ability to control pathogens and commensals. These findings broaden our understanding of host modulation of the microbiome as well as the complexity of human mucosal defense mechanisms, thus providing promising avenues to explore for drug development.


Asunto(s)
Interacciones Microbiota-Huesped/genética , Péptidos/genética , alfa-Defensinas/genética , Animales , Antiinfecciosos/metabolismo , Microambiente Celular/genética , Humanos , Concentración de Iones de Hidrógeno , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , Microbiota/genética , Oxidación-Reducción , Células de Paneth/metabolismo , Péptidos/metabolismo , Proteolisis , alfa-Defensinas/metabolismo
2.
Infect Immun ; 86(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29378796

RESUMEN

The antimicrobial peptide human ß-defensin 1 (hBD1) is continuously produced by epithelial cells in many tissues. Compared to other defensins, hBD1 has only minor antibiotic activity in its native state. After reduction of its disulfide bridges, however, it becomes a potent antimicrobial agent against bacteria, while the oxidized native form (hBD1ox) shows specific activity against Gram-negative bacteria. We show that the killing mechanism of hBD1ox depends on aerobic growth conditions and bacterial enzymes. We analyzed the different activities of hBD1 using mutants of Escherichia coli lacking one or more specific proteins of their outer membrane, cytosol, or redox systems. We discovered that DsbA and DsbB are essential for the antimicrobial activity of hBD1ox but not for that of reduced hBD1 (hBD1red). Furthermore, our results strongly suggest that hBD1ox uses outer membrane protein FepA to penetrate the bacterial periplasm space. In contrast, other bacterial proteins in the outer membrane and cytosol did not modify the antimicrobial activity. Using immunogold labeling, we identified the localization of hBD1ox in the periplasmic space and partly in the outer membrane of E. coli However, in resistant mutants lacking DsbA and DsbB, hBD1ox was detected mainly in the bacterial cytosol. In summary, we discovered that hBD1ox could use FepA to enter the periplasmic space, where its activity depends on presence of DsbA and DsbB. HBD1ox concentrates in the periplasm in Gram-negative bacteria, which finally leads to bleb formation and death of the bacteria. Thus, the bacterial redox system plays an essential role in mechanisms of resistance against host-derived peptides such as hBD1.


Asunto(s)
Proteínas Bacterianas/metabolismo , Oxidorreductasas/metabolismo , Proteínas Periplasmáticas/metabolismo , beta-Defensinas/metabolismo , Bacterias/genética , Bacterias/inmunología , Bacterias/metabolismo , Bacterias/ultraestructura , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/inmunología , Escherichia coli/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Membranas/metabolismo , Modelos Biológicos , Oxidación-Reducción , beta-Defensinas/genética , beta-Defensinas/inmunología
3.
Mucosal Immunol ; 8(3): 661-71, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25354318

RESUMEN

Defensins protect human barriers from commensal and pathogenic microorganisms. Human α-defensin 6 (HD-6) is produced exclusively by small intestinal Paneth cells but, in contrast to other antimicrobial peptides (AMPs) for HD-6, no direct antibacterial killing activity has been detected so far. Herein, we systematically tested how environmental factors, like pH and reducing conditions, affect antimicrobial activity of different defensins against anaerobic bacteria of the human intestinal microbiota. Remarkably, by mimicking the intestinal milieu we detected for the first time antibacterial activity of HD-6. Activity was observed against anaerobic gut commensals but not against some pathogenic strains. Antibiotic activity was attributable to the reduced peptide and independent of free cysteines or a conserved histidine residue. Furthermore, the oxidoreductase thioredoxin, which is also expressed in Paneth cells, is able to reduce a truncated physiological variant of HD-6. Ultrastructural analyses revealed that reduced HD-6 causes disintegration of cytoplasmic structures and alterations in the bacterial cell envelope, while maintaining extracellular net-like structures. We conclude that HD-6 is an antimicrobial peptide. Our data suggest two distinct antimicrobial mechanisms by one peptide: HD-6 kills specific microbes depending on the local environmental conditions, whereas known microbial trapping by extracellular net structures is independent of the reducing milieu.


Asunto(s)
Antibacterianos/farmacología , alfa-Defensinas/farmacología , Antibacterianos/síntesis química , Bacteroides/efectos de los fármacos , Bacteroides/crecimiento & desarrollo , Bacteroides/ultraestructura , Bifidobacterium/efectos de los fármacos , Bifidobacterium/crecimiento & desarrollo , Bifidobacterium/ultraestructura , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Candida albicans/ultraestructura , Escherichia/efectos de los fármacos , Escherichia/crecimiento & desarrollo , Escherichia/ultraestructura , Humanos , Concentración de Iones de Hidrógeno , Lactobacillus acidophilus/efectos de los fármacos , Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus acidophilus/ultraestructura , Pruebas de Sensibilidad Microbiana , Oxidación-Reducción , Células de Paneth/inmunología , Células de Paneth/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/ultraestructura , Salmonella enterica/efectos de los fármacos , Salmonella enterica/crecimiento & desarrollo , Salmonella enterica/ultraestructura , Staphylococcus/efectos de los fármacos , Staphylococcus/crecimiento & desarrollo , Staphylococcus/ultraestructura , Streptococcus/efectos de los fármacos , Streptococcus/crecimiento & desarrollo , Streptococcus/ultraestructura , alfa-Defensinas/síntesis química
5.
Chem Biol ; 7(10): 765-72, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11033080

RESUMEN

BACKGROUND: Nonribosomal peptide synthetases (NRPSs) are large multidomain proteins that catalyze the formation of a wide range of biologically active natural products. These megasynthetases contain condensation (C) domains that catalyze peptide bond formation and chain elongation. The natural substrates for C domains are biosynthetic intermediates that are covalently tethered to thiolation (T) domains within the synthetase by thioester linkages. Characterizing C domain substrate specificity is important for the engineered biosynthesis of new compounds. RESULTS: We synthesized a series of aminoacyl-N-acetylcysteamine thioesters (aminoacyl-SNACs) and show that they are small-molecule substrates for NRPS C domains. Comparison of rates of peptide bond formation catalyzed by the C domain from enterobactin synthetase with various aminoacyl-SNACs as downstream (acceptor) substrates revealed high selectivity for the natural substrate analog L-Ser-SNAC. Comparing L- and D-Phe-SNACs as upstream (donor) substrates for the first C domain from tyrocidine synthetase revealed clear D- versus L-selectivity. CONCLUSIONS: Aminoacyl-SNACs are substrates for NRPS C domains and are useful for characterizing the substrate specificity of C domain-catalyzed peptide bond formation.


Asunto(s)
Cisteamina/metabolismo , Escherichia coli/enzimología , Ligasas/química , Ligasas/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Péptido Sintasas/química , Péptido Sintasas/metabolismo , Catálisis , Dominio Catalítico , Cromatografía Líquida de Alta Presión , Cisteamina/análogos & derivados , Cisteamina/síntesis química , Cisteamina/química , Enterobactina/metabolismo , Ésteres/síntesis química , Ésteres/química , Ésteres/metabolismo , Cinética , Estructura Terciaria de Proteína , Subunidades de Proteína , Estereoisomerismo , Especificidad por Sustrato
6.
Biochemistry ; 39(9): 2297-306, 2000 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-10694396

RESUMEN

The adenylation (A) domain of the Yersinia pestis nonribosomal peptide synthetase that biosynthesizes the siderophore yersiniabactin (Ybt) activates three molecules of L-cysteine and covalently aminoacylates the phosphopantetheinyl (P-pant) thiols on three peptidyl carrier protein (PCP) domains embedded in the two synthetase subunits, two in cis (PCP1, PCP2) in subunit HMWP2 and one in trans (PCP3) in subunit HMWP1. This two-step process of activation and loading by the A domain is analogous to the operation of the aminoacyl-tRNA synthetases in ribosomal peptide synthesis. Adenylation domain specificity for the first step of reversible aminoacyl adenylate formation was assessed with the amino acid-dependent [(32)P]-PP(i)-ATP exchange assay to show that S-2-aminobutyrate and beta-chloro-L-alanine were alternate substrates. The second step of A domain catalysis, capture of the bound aminoacyl adenylate by the P-pant-SH of the PCP domains, was assayed both by catalytic release of PP(i) and by covalent aminoacylation of radiolabeled substrates on either the PCP1 fragment of HMWP2 or the PCP3-thioesterase double domain fragment of HMWP1. There was little selectivity for capture of each of the three adenylates by PCP3 in the second step, arguing against any hydrolytic proofreading of incorrect substrates by the A domain. The holo-PCP3 domain accelerated PP(i) release and catalytic turnover by 100-200-fold over the leak rate (<1 min(-1)) of aminoacyl adenylates into solution while PCP1 in trans had only about a 5-fold effect. Free pantetheine could capture cysteinyl adenylate with a 25-50-fold increase in k(cat) while CoA was 10-fold less effective. The K(m) of free pantetheine (30-50 mM) was 3 orders of magnitude larger than that of PCP3-TE (10-25 microM), indicating a net 10(4) greater catalytic efficiency for transfer to the P-pant arm of PCP3 by the Ybt synthetase A domain, relative to P-pant alone.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Portadoras/química , Péptido Sintasas/química , Fenoles , Sideróforos/química , Tiazoles , Aminoacilación de ARN de Transferencia , Acilación , Proteínas de la Membrana Bacteriana Externa , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Clonación Molecular , Coenzima A/química , Cisteína/química , Difosfatos/química , Holoenzimas/química , Proteínas de Unión a Hierro , Panteteína/química , Fragmentos de Péptidos/biosíntesis , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/aislamiento & purificación , Proteínas de Unión Periplasmáticas , Estructura Terciaria de Proteína , Especificidad por Sustrato , Tioléster Hidrolasas/química , Tioléster Hidrolasas/genética , Yersinia pestis/enzimología
7.
Proc Natl Acad Sci U S A ; 97(6): 2509-14, 2000 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-10688898

RESUMEN

Enterobactin, the tris-(N-(2,3-dihydroxybenzoyl)serine) trilactone siderophore of Escherichia coli, is synthesized by a three-protein (EntE, B, F) six-module nonribosomal peptide synthetase (NRPS). In this work, the 142-kDa four-domain protein EntF was bisected into two double-domain fragments: a 108-kDa condensation and adenylation construct, EntF C-A, and a 37-kDa peptidyl carrier protein (PCP) and thioesterase protein, EntF PCP-TE. The adenylation domain activity of EntF C-A formed seryl-AMP but lost the ability to transfer the seryl moiety to the cognate EntF PCP-TE in trans. Seryl transfer to heterologous PCP protein fragments, the SrfB1 PCP from surfactin synthetase and Ybt PCP1 from yersiniabactin synthetase, was observed at rates of 0.5 min(-1) and 0.01 min(-1), respectively. The possibility that these slow acylation rates reflected dissociation of acyl/aminoacyl-AMP followed by adventitious thiolation by the heterologous PCPs in solution was addressed by measuring catalytic turnover of pyrophosphate (PP(i)) released from the adenylation domain. The holo SrfB1 PCP protein as well as Ybt PCP1 did not stimulate an increase in PP(i) release from EntF C-A or EntE. In this light, aminoacylations in trans between A and PCP domain fragments of NRPS assembly lines must be subjected to kinetic scrutiny to determine whether transfer is truly between protein domains or results from slow aminoacyl-AMP release and subsequent nonenzymatic thiol capture.


Asunto(s)
Proteínas de Escherichia coli , Ligasas/química , Complejos Multienzimáticos/química , Péptido Sintasas/química , Péptidos Cíclicos , Fenoles , Compuestos de Sulfhidrilo/metabolismo , Tiazoles , Adenosina Monofosfato/metabolismo , Proteínas Bacterianas/metabolismo , Difosfatos/metabolismo , Escherichia coli/enzimología , Cinética , Lipopéptidos , Estructura Terciaria de Proteína , Proteínas Recombinantes , Sideróforos/metabolismo
8.
Biochemistry ; 38(19): 6171-7, 1999 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-10320345

RESUMEN

A key step in fungal biosynthesis of lysine, enzymatic reduction of alpha-aminoadipate at C6 to the semialdehyde, requires two gene products in Saccharomyces cerevisiae, Lys2 and Lys5. Here, we show that the 31-kDa Lys5 is a specific posttranslational modification catalyst, using coenzyme A (CoASH) as a cosubstrate to phosphopantetheinylate Ser880 of the 155-kDa Lys2 and activate it for catalysis. Lys2 was subcloned from S. cerevisiae and expressed in and purified from Escherichia coli as a full-length 155-kDa enzyme, as a 105-kDa adenylation/peptidyl carrier protein (A/PCP) fragment (residues 1-924), and as a 14-kDa PCP fragment (residues 809-924). The apo-PCP fragment was covalently modified to phosphopantetheinylated holo-PCP by pure Lys5 and CoASH with a Km of 1 microM and kcat of 3 min-1 for both the PCP and CoASH substrates. The adenylation domain of the A/PCP fragment activated S-carboxymethyl-L-cysteine (kcat/Km = 840 mM-1 min-1) at 16% the efficiency of L-alpha-aminoadipate in [32P]PPi/ATP exchange assays. The holo form of the A/PCP 105-kDa fragment of Lys2 covalently aminoacylated itself with [35S]S-carboxymethyl-L-cysteine. Addition of NADPH discharged the covalent acyl-S-PCP Lys2, consistent with a reductive cleavage of the acyl-S-enzyme intermediate. These results identify the Lys5/Lys2 pair as a two-component system in which Lys5 covalently primes Lys2, allowing alpha-aminoadipate reductase activity by holo-Lys2 with catalytic cycles of autoaminoacylation and reductive cleavage. This is a novel mechanism for a fungal enzyme essential for amino acid metabolism.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Lisina/biosíntesis , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/enzimología , Ácido 2-Aminoadípico/análogos & derivados , Ácido 2-Aminoadípico/metabolismo , Proteína Transportadora de Acilo/metabolismo , Aldehído Oxidorreductasas/aislamiento & purificación , Carbocisteína/metabolismo , Escherichia coli , L-Aminoadipato-Semialdehído Deshidrogenasa , NADP/metabolismo , Radioisótopos de Azufre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...