Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 15(2): e0254023, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38275913

RESUMEN

Bacterial infections are a growing global healthcare concern, as an estimated annual 4.95 million deaths are associated with antimicrobial resistance (AMR). Methicillin-resistant Staphylococcus aureus is one of the deadliest pathogens and a high-priority pathogen according to the World Health Organization. Peptidoglycan hydrolases (PGHs) of phage origin have been postulated as a new class of antimicrobials for the treatment of bacterial infections, with a novel mechanism of action and no known resistances. The modular architecture of PGHs permits the creation of chimeric PGH libraries. In this study, the chimeric enzyme MEndoB was selected from a library of staphylococcal PGHs based on its rapid and sustained activity against staphylococci in human serum. The benefit of the presented screening approach was illustrated by the superiority of MEndoB in a head-to-head comparison with other PGHs intended for use against staphylococcal bacteremia. MEndoB displayed synergy with antibiotics and rapid killing in human whole blood with complete inhibition of re-growth over 24 h at low doses. Successful treatment of S. aureus-infected zebrafish larvae with MEndoB provided evidence for its in vivo effectiveness. This was further confirmed in a lethal systemic mouse infection model in which MEndoB significantly reduced S. aureus loads and tumor necrosis factor alpha levels in blood in a dose-dependent manner, which led to increased survival of the animals. Thus, the thorough lead candidate selection of MEndoB resulted in an outstanding second-generation PGH with in vitro, ex vivo, and in vivo results supporting further development.IMPORTANCEOne of the most pressing challenges of our era is the rising occurrence of bacteria that are resistant to antibiotics. Staphylococci are prominent pathogens in humans, which have developed multiple strategies to evade the effects of antibiotics. Infections caused by these bacteria have resulted in a high burden on the health care system and a significant loss of lives. In this study, we have successfully engineered lytic enzymes that exhibit an extraordinary ability to eradicate staphylococci. Our findings substantiate the importance of meticulous lead candidate selection to identify therapeutically promising peptidoglycan hydrolases with unprecedented activity. Hence, they offer a promising new avenue for treating staphylococcal infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Sepsis , Infecciones Estafilocócicas , Humanos , Animales , Ratones , Staphylococcus aureus , Peptidoglicano , Pez Cebra , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Staphylococcus , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/uso terapéutico , Sepsis/tratamiento farmacológico
2.
mBio ; 14(5): e0183023, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37768041

RESUMEN

IMPORTANCE: The rising prevalence of antimicrobial resistance in S. aureus has rendered treatment of staphylococcal infections increasingly difficult, making the discovery of alternative treatment options a high priority. Peptidoglycan hydrolases, a diverse group of bacteriolytic enzymes, show high promise as such alternatives due to their rapid and specific lysis of bacterial cells, independent of antibiotic resistance profiles. However, using these enzymes for the systemic treatment of local infections, such as osteomyelitis foci, needs improvement, as the therapeutic distributes throughout the whole host, resulting in low concentrations at the actual infection site. In addition, the occurrence of intracellularly persisting bacteria can lead to relapsing infections. Here, we describe an approach using tissue-targeting to increase the local concentration of therapeutic enzymes in the infected bone. The enzymes were modified with a short targeting moiety that mediated accumulation of the therapeutic in osteoblasts and additionally enables targeting of intracellularly surviving bacteria.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Peptidoglicano , N-Acetil Muramoil-L-Alanina Amidasa/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Bacterias , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
3.
Nanomedicine ; 47: 102607, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36167305

RESUMEN

Extracellular vesicles (EVs), nanovesicles released by cells to effectively exchange biological information, are gaining interest as drug delivery system. Yet, analogously to liposomes, they show short blood circulation times and accumulation in the liver and the spleen. For tissue specific delivery, EV surfaces will thus have to be functionalized. We present a novel platform for flexible modification of EVs with target-specific ligands based on the avidin-biotin system. Genetic engineering of donor cells with a glycosylphosphatidylinositol-anchored avidin (GPI-Av) construct allows the isolation of EVs displaying avidin on their surface, functionalized with any biotinylated ligand. For proof of concept, GPI-Av EVs were modified with i) a biotinylated antibody or ii) de novo designed and synthesized biotinylated ligands binding carbonic anhydrase IX (CAIX), a membrane associated enzyme overexpressed in cancer. Functionalized EVs showed specific binding and uptake by CAIX-expressing cells, demonstrating the power of the system to prepare EVs for cell-specific drug delivery.


Asunto(s)
Vesículas Extracelulares , Diagnóstico por Imagen
4.
Viruses ; 14(12)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36560804

RESUMEN

Staphylococcus aureus is a major causative agent of bovine mastitis, a disease considered one of the most economically devastating in the dairy sector. Considering the increasing prevalence of antibiotic-resistant strains, novel therapeutic approaches efficiently targeting extra- and intracellular bacteria and featuring high activity in the presence of raw milk components are needed. Here, we have screened a library of eighty peptidoglycan hydrolases (PGHs) for high activity against S. aureus in raw bovine milk, twelve of which were selected for further characterization and comparison in time-kill assays. The bacteriocins lysostaphin and ALE-1, and the chimeric PGH M23LST(L)_SH3b2638 reduced bacterial numbers in raw milk to the detection limit within 10 min. Three CHAP-based PGHs (CHAPGH15_SH3bAle1, CHAPK_SH3bLST_H, CHAPH5_LST_H) showed gradually improving activity with increasing dilution of the raw milk. Furthermore, we demonstrated synergistic activity of CHAPGH15_SH3bAle1 and LST when used in combination. Finally, modification of four PGHs (LST, M23LST(L)_SH3b2638, CHAPK_SH3bLST, CHAPGH15_SH3bAle1) with the cell-penetrating peptide TAT significantly enhanced the eradication of intracellular S. aureus in bovine mammary alveolar cells compared to the unmodified parentals in a concentration-dependent manner.


Asunto(s)
Mastitis , Infecciones Estafilocócicas , Femenino , Humanos , Animales , Staphylococcus aureus , Peptidoglicano , Leche/microbiología , N-Acetil Muramoil-L-Alanina Amidasa/genética , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/epidemiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Mastitis/tratamiento farmacológico , Células Epiteliales
5.
Antimicrob Agents Chemother ; 66(5): e0227321, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35416713

RESUMEN

Staphylococcus aureus causes a broad spectrum of diseases in humans and animals. It is frequently associated with inflammatory skin disorders such as atopic dermatitis, where it aggravates symptoms. Treatment of S. aureus-associated skin infections with antibiotics is discouraged due to their broad-range deleterious effect on healthy skin microbiota and their ability to promote the development of resistance. Thus, novel S. aureus-specific antibacterial agents are desirable. We constructed two chimeric cell wall-lytic enzymes, Staphefekt SA.100 and XZ.700, which are composed of functional domains from the bacteriophage endolysin Ply2638 and the bacteriocin lysostaphin. Both enzymes specifically killed S. aureus and were inactive against commensal skin bacteria such as Staphylococcus epidermidis, with XZ.700 proving more active than SA.100 in multiple in vitro activity assays. When surface-attached mixed staphylococcal cultures were exposed to XZ.700 in a simplified microbiome model, the enzyme selectively removed S. aureus and retained S. epidermidis. Furthermore, XZ.700 did not induce resistance in S. aureus during repeated rounds of exposure to sublethal concentrations. Finally, we demonstrated that XZ.700 formulated as a cream is effective at killing S. aureus on reconstituted human epidermis and that an XZ.700-containing gel significantly reduces bacterial numbers compared to an untreated control in a mouse model of S. aureus-induced skin infection.


Asunto(s)
Enfermedades Cutáneas Infecciosas , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Celulitis (Flemón) , Modelos Animales de Enfermedad , Endopeptidasas , Epidermis , Humanos , Ratones , Piel/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus
6.
Sci Rep ; 11(1): 18776, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548588

RESUMEN

Bacterial colonization of drivelines represents a major adverse event in the implantation of left ventricular assist devices (L-VADs) for the treatment of congestive heart failure. From the external driveline interface and through the skin breach, pathogens can ascend to the pump pocket, endangering the device function and the patient's life. Surface Micro-Engineered Biosynthesized cellulose (BC) is an implantable biomaterial, which minimizes fibrotic tissue deposition and promotes healthy tissue regeneration. The topographic arrangement of cellulose fibers and the typical material porosity support its potential protective function against bacterial permeation; however, this application has not been tested in clinically relevant animal models. Here, a goat model was adopted to evaluate the barrier function of BC membranes. The external silicone mantle of commercial L-VAD drivelines was implanted percutaneously with an intervening layer of BC to separate them from the surrounding soft tissue. End-point evaluation at 6 and 12 weeks of two separate animal groups revealed the local bacterial colonization at the different interfaces in comparison with unprotected driveline mantle controls. The results demonstrate that the BC membranes established an effective barrier against the bacterial colonization of the outer driveline interface. The containment of pathogen infiltration, in combination with the known anti-fibrotic effect of BC, may promote a more efficient immune clearance upon driveline implantation and support the efficacy of local antibiotic treatments, therefore mitigating the risk connected to their percutaneous deployment.


Asunto(s)
Bacterias/crecimiento & desarrollo , Celulosa/metabolismo , Corazón Auxiliar/microbiología , Animales , Vendajes , Medios de Cultivo , Femenino , Cabras , Insuficiencia Cardíaca/terapia , Humanos , Siliconas
7.
mBio ; 11(5)2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963004

RESUMEN

Staphylococcus aureus is a human pathogen causing life-threatening diseases. The increasing prevalence of multidrug-resistant S. aureus infections is a global health concern, requiring development of novel therapeutic options. Peptidoglycan-degrading enzymes (peptidoglycan hydrolases, PGHs) have emerged as a highly effective class of antimicrobial proteins against S. aureus and other pathogens. When applied to Gram-positive bacteria, PGHs hydrolyze bonds within the peptidoglycan layer, leading to rapid bacterial death by lysis. This activity is highly specific and independent of the metabolic activity of the cell or its antibiotic resistance patterns. However, systemic application of PGHs is limited by their often low activity in vivo and by an insufficient serum circulation half-life. To address this problem, we aimed to extend the half-life of PGHs selected for high activity against S. aureus in human serum. Half-life extension and increased serum circulation were achieved through fusion of PGHs to an albumin-binding domain (ABD), resulting in high-affinity recruitment of human serum albumin and formation of large protein complexes. Importantly, the ABD-fused PGHs maintained high killing activity against multiple drug-resistant S. aureus strains, as determined by ex vivo testing in human blood. The top candidate, termed ABD_M23, was tested in vivo to treat S. aureus-induced murine bacteremia. Our findings demonstrate a significantly higher efficacy of ABD_M23 than of the parental M23 enzyme. We conclude that fusion with ABD represents a powerful approach for half-life extension of PGHs, expanding the therapeutic potential of these enzybiotics for treatment of multidrug-resistant bacterial infections.IMPORTANCE Life-threatening infections with Staphylococcus aureus are often difficult to treat due to the increasing prevalence of antibiotic-resistant bacteria and their ability to persist in protected niches in the body. Bacteriolytic enzymes are promising new antimicrobials because they rapidly kill bacteria, including drug-resistant and persisting cells, by destroying their cell wall. However, when injected into the bloodstream, these enzymes are not retained long enough to clear an infection. Here, we describe a modification to increase blood circulation time of the enzymes and enhance treatment efficacy against S. aureus-induced bloodstream infections. This was achieved by preselecting enzyme candidates for high activity in human blood and coupling them to serum albumin, thereby preventing their elimination by kidney filtration and blood vessel cells.


Asunto(s)
Bacteriemia/tratamiento farmacológico , N-Acetil Muramoil-L-Alanina Amidasa/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/enzimología , Adulto , Animales , Femenino , Humanos , Masculino , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/genética , Ratones , Ratones Endogámicos C57BL , N-Acetil Muramoil-L-Alanina Amidasa/genética , Peptidoglicano/metabolismo , Albúmina Sérica/genética , Albúmina Sérica/metabolismo , Staphylococcus aureus/genética
8.
Lab Chip ; 20(14): 2549-2561, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32568322

RESUMEN

We present an automated point-of-care testing (POCT) system for rapid detection of species- and resistance markers in methicillin-resistant Staphylococcus aureus (MRSA) at the level of single cells, directly from nasal swab samples. Our novel system allows clear differentiation between MRSA, methicillin-sensitive S. aureus (MSSA) and methicillin-resistant coagulase-negative staphylococci (MR-CoNS), which is not the case for currently used real-time quantitative PCR based systems. On top, the novel approach outcompetes the culture-based methods in terms of its short time-to-result (1 h vs. up to 60 h) and reduces manual labor. The walk-away test is fully automated on the centrifugal microfluidic LabDisk platform. The LabDisk cartridge comprises the unit operations swab-uptake, reagent pre-storage, distribution of the sample into 20 000 droplets, specific enzymatic lysis of Staphylococcus spp. and recombinase polymerase amplification (RPA) of species (vicK) - and resistance (mecA) -markers. LabDisk actuation, incubation and multi-channel fluorescence detection is demonstrated with a clinical isolate and spiked nasal swab samples down to a limit of detection (LOD) of 3 ± 0.3 CFU µl-1 for MRSA. The novel approach of the digital single cell detection is suggested to improve hospital admission screening, timely decision making, and goal-oriented antibiotic therapy. The implementation of a higher degree of multiplexing is required to translate the results into clinical practice.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Proteínas Bacterianas , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas en el Punto de Atención , Infecciones Estafilocócicas/diagnóstico , Staphylococcus aureus/genética
9.
mBio ; 11(2)2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32291298

RESUMEN

Staphylococcus aureus is a major concern in human health care, mostly due to the increasing prevalence of antibiotic resistance. Intracellular localization of S. aureus plays a key role in recurrent infections by protecting the pathogens from antibiotics and immune responses. Peptidoglycan hydrolases (PGHs) are highly specific bactericidal enzymes active against both drug-sensitive and -resistant bacteria. However, PGHs able to effectively target intracellular S. aureus are not yet available. To overcome this limitation, we first screened 322 recombineered PGHs for staphylolytic activity under conditions found inside eukaryotic intracellular compartments. The most active constructs were modified by fusion to different cell-penetrating peptides (CPPs), resulting in increased uptake and enhanced intracellular killing (reduction by up to 4.5 log units) of various S. aureus strains (including methicillin-resistant S. aureus [MRSA]) in different tissue culture infection models. The combined application of synergistic PGH-CPP constructs further enhanced their intracellular efficacy. Finally, synergistically active PGH-CPP cocktails reduced the total S. aureus by more than 2.2 log units in a murine abscess model after peripheral injection. Significantly more intracellular bacteria were killed by the PGH-CPPs than by the PGHs alone. Collectively, our findings show that CPP-fused PGHs are effective novel protein therapeutics against both intracellular and drug-resistant S. aureusIMPORTANCE The increasing prevalence of antibiotic-resistant bacteria is one of the most urgent problems of our time. Staphylococcus aureus is an important human pathogen that has acquired several mechanisms to evade antibiotic treatment. In addition, S. aureus is able to invade and persist within human cells, hiding from the immune response and antibiotic therapies. For these reasons, novel antibacterial strategies against these pathogens are needed. Here, we developed lytic enzymes which are able to effectively target drug-resistant and intracellular S. aureus Fusion of these so-called enzybiotics to cell-penetrating peptides enhanced their uptake and intracellular bactericidal activity in cell culture and in an abscess mouse model. Our results suggest that cell-penetrating enzybiotics are a promising new class of therapeutics against staphylococcal infections.


Asunto(s)
Antibacterianos/uso terapéutico , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Células 3T3-L1 , Células A549 , Absceso/tratamiento farmacológico , Absceso/microbiología , Animales , Antibacterianos/química , Farmacorresistencia Bacteriana , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/uso terapéutico
10.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29320762

RESUMEN

Peptidoglycan hydrolases (PGHs) have been suggested as novel therapeutics for the treatment of bovine mastitis. However, activity in the presence of cow's milk is an important requirement for drugs administered into the bovine udder. We have used a microtiter plate-based protocol to screen a library of >170 recombinant PGHs, including engineered bacteriophage endolysins, for enzymes with activity against Staphylococcus aureus in milk. Eight suitable PGH constructs were identified by this approach, and their efficacies against S. aureus in heat-treated milk were compared by time-kill assays. The two most active enzymes (lysostaphin and CHAPK_CWT-LST) reduced S. aureus numbers in milk to undetectable levels within minutes at nanomolar concentrations. Due to their different peptidoglycan cleavage sites, these PGH constructs revealed synergistic activity, as demonstrated by checkerboard assays, spot assays, and time-kill experiments. Furthermore, they proved active against a selection of staphylococcal mastitis isolates from different geographical regions when applied individually or in synergistic combination. The PGH combination completely eradicated S. aureus from milk: no more bacteria were detected within 24 h after the addition of the enzymes, corresponding to a reduction of >9 log units from the level in the control. Efficacy was also retained at different inoculum levels (3 log versus 6 log CFU/ml) and when S. aureus was grown in milk as opposed to broth prior to the experiments. In raw cow's milk, CHAPK_CWT-LST showed reduced efficacy, whereas lysostaphin retained its activity, reducing bacterial numbers by >3.5 log units within 3 h.IMPORTANCE Staphylococci, and S. aureus in particular, are a major cause of bovine mastitis, an inflammation of the mammary gland in cows that is associated with high costs and risks for consumers of milk products. S. aureus-induced mastitis, commonly treated by intramammary infusion of antibiotics, is characterized by low cure rates and increasing antibiotic resistance in bacteria. Therefore, alternative treatment options are highly desirable. PGHs, including bacteriophage endolysins, rapidly and specifically kill selected pathogens by degrading their cell walls and are refractory to resistance development; thus, they have promise as novel antibacterial agents. This study employed a screening approach to identify PGH constructs with high staphylolytic activity in cow's milk among a large collection of enzymes. Our results suggest that the most promising enzymes identified by this strategy hold potential as novel mastitis therapeutics and thus support their further characterization in animal models.

11.
Nat Commun ; 8(1): 1872, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192141

RESUMEN

The active transport of cargo molecules within cells is essential for life. Developing synthetic strategies for cargo control in living or inanimate thermal systems could lead to powerful tools to manipulate chemical gradients at the microscale and thus drive processes out of equilibrium to realize work. Here we demonstrate a colloidal analog of the complex biological shuttles responsible for molecular trafficking in cells. Our colloidal shuttles consist of magneto-dielectric particles that are loaded with cargo particles or living cells through size-selective dielectrophoretic trapping using electrical fields. The loaded colloidal shuttle can be transported with magnetic field gradients before cargo is released at the target location by switching off the electrical field. Such spatiotemporal control over the distribution of chemically active cargo in a reversible fashion can be potentially exploited for fundamental biological research or for the development of novel technologies for advanced cell culturing, drug discovery and medical diagnosis.

13.
Appl Environ Microbiol ; 83(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28159785

RESUMEN

Peptidoglycan hydrolases (PGHs) have been suggested as novel therapeutics for the treatment of bovine mastitis. However, activity in the presence of cow's milk is an important requirement for drugs administered into the bovine udder. We have screened a library of >170 recombinant PGHs, including engineered bacteriophage endolysins, for enzymes with activity against Staphylococcus aureus in milk, using a microtiter plate-based protocol. Nine suitable PGH constructs were identified by this approach and further compared in time-kill assays for their efficacy against S. aureus in heat-treated milk. The three most active enzymes (lysostaphin, Ami2638A, and CHAPK_CWT-LST) reduced S. aureus in milk to undetectable numbers within minutes at nanomolar concentrations. Due to their different peptidoglycan cleavage sites, these PGH constructs revealed synergistic activity in most combinations, as demonstrated by checkerboard assays, spot assays, and time-kill experiments. Furthermore, they proved active against a selection of staphylococcal mastitis isolates from different geographical regions when applied individually or in synergistic combination. The most effective PGH combination completely eradicated S. aureus from milk, with no more bacteria being detected within 24 h after addition of the enzymes, corresponding to a reduction of >9 log units compared to the control. Efficacy was also retained at different inoculum levels (3 versus 6 log CFU/ml) and when S. aureus was grown in milk as opposed to broth prior to the experiments. In raw cow's milk, CHAPK_CWT-LST showed reduced efficacy, whereas both Ami2638A and lysostaphin retained their activity, reducing bacterial numbers by >3.5 log units within 3 h.IMPORTANCE Staphylococci and S. aureus in particular are a major cause of bovine mastitis, an inflammation of the mammary gland in cows associated with high costs and risks for consumers of milk products. S. aureus-induced mastitis, commonly treated by intramammary infusion of antibiotics, is characterized by low cure rates and increasing antibiotic resistance in bacteria. Therefore, alternative treatment options are highly desirable. PGHs, including bacteriophage endolysins, rapidly and specifically kill selected pathogens by degrading their cell wall and are refractory to resistance development, therefore holding promise as novel antibacterial agents. This study employed a screening approach to identify PGH constructs with high staphylolytic activity in cow's milk within a large collection of enzymes. Our results suggest that the most promising enzymes identified by this strategy hold potential as novel mastitis therapeutics and support their further characterization in animal models.


Asunto(s)
Leche/microbiología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/farmacología , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/farmacología , Bovinos , Enfermedades de los Bovinos/tratamiento farmacológico , Enfermedades de los Bovinos/microbiología , Descubrimiento de Drogas , Sinergismo Farmacológico , Femenino , Biblioteca de Genes , Calor , Glándulas Mamarias Animales/microbiología , Mastitis Bovina/tratamiento farmacológico , Mastitis Bovina/microbiología , Pruebas de Sensibilidad Microbiana , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/genética , Peptidoglicano/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria
14.
J Infect Dis ; 213(2): 305-13, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26188074

RESUMEN

BACKGROUND: Staphylococcus aureus-infected patients treated with antibiotics that are effective in vitro often experience relapse of infection because the bacteria hide in privileged locations. These locations include abscesses and host cells, which contain low-pH compartments and are sites from which nonstable S. aureus small-colony variants (SCVs) are frequently recovered. METHODS: We assessed the effect of low pH on S. aureus colony phenotype and bacterial growth, using in vitro and in vivo models of long-term infection. RESULTS: We showed that low pH induced nonstable SCVs and nonreplicating persisters that are capable of regrowth. Within host cells, S. aureus was located in phagolysosomes, a low-pH compartment. Therapeutic neutralization of phagolysosomal pH with ammonium chloride, bafilomycin A1, or the antimalaria drug chloroquine reduced SCVs in infected host cells. In a systemic mouse infection model, treatment with chloroquine also reduced SCVs. CONCLUSIONS: Our results show that the acidic environment favors formation of nonstable SCVs, which reflect the SCVs found in clinics. They also provide evidence that treatment with alkalinizing agents, together with antibiotics, may provide a novel translational strategy for eradicating persisting intracellular reservoirs of staphylococci. This approach may also be extended to other intracellular bacteria.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Fagosomas/química , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología , Cloruro de Amonio/farmacología , Animales , Línea Celular Tumoral , Cloroquina/farmacología , Regulación Bacteriana de la Expresión Génica , Variación Genética , Humanos , Concentración de Iones de Hidrógeno , Macrólidos/farmacología , Ratones , Ratones Endogámicos C57BL , Staphylococcus aureus/crecimiento & desarrollo
15.
J Antimicrob Chemother ; 70(5): 1453-65, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25630640

RESUMEN

OBJECTIVES: In the light of increasing drug resistance in Staphylococcus aureus, bacteriophage endolysins [peptidoglycan hydrolases (PGHs)] have been suggested as promising antimicrobial agents. The aim of this study was to determine the antimicrobial activity of nine enzymes representing unique homology groups within a diverse class of staphylococcal PGHs. METHODS: PGHs were recombinantly expressed, purified and tested for staphylolytic activity in multiple in vitro assays (zymogram, turbidity reduction assay and plate lysis) and against a comprehensive set of strains (S. aureus and CoNS). PGH cut sites in the staphylococcal peptidoglycan were determined by biochemical assays (Park-Johnson and Ghuysen procedures) and MS analysis. The enzymes were tested for their ability to eradicate static S. aureus biofilms and compared for their efficacy against systemic MRSA infection in a mouse model. RESULTS: Despite similar modular architectures and unexpectedly conserved cleavage sites in the peptidoglycan (conferred by evolutionarily divergent catalytic domains), the enzymes displayed varying degrees of in vitro lytic activity against numerous staphylococcal strains, including cell surface mutants and drug-resistant strains, and proved effective against static biofilms. In a mouse model of systemic MRSA infection, six PGHs provided 100% protection from death, with animals being free of clinical signs at the end of the experiment. CONCLUSIONS: Our results corroborate the high potential of PGHs for treatment of S. aureus infections and reveal unique antimicrobial and biochemical properties of the different enzymes, suggesting a high diversity of potential applications despite highly conserved peptidoglycan target sites.


Asunto(s)
Antibacterianos/uso terapéutico , Bacteriófagos/enzimología , Terapia Biológica/métodos , Endopeptidasas/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Animales , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Pared Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Endopeptidasas/genética , Endopeptidasas/metabolismo , Femenino , Hidrólisis , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Peptidoglicano/efectos de los fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapéutico , Infecciones Estafilocócicas/microbiología , Análisis de Supervivencia , Resultado del Tratamiento
16.
Appl Microbiol Biotechnol ; 99(2): 741-52, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25038926

RESUMEN

The increasing rate of resistance of pathogenic bacteria, such as Staphylococcus aureus, to classical antibiotics has driven research toward identification of other means to fight infectious disease. One particularly viable option is the use of bacteriophage-encoded peptidoglycan hydrolases, called endolysins or enzybiotics. These enzymes lyse the bacterial cell wall upon direct contact, are not inhibited by traditional antibiotic resistance mechanisms, and have already shown great promise in the areas of food safety, human health, and veterinary science. We have identified and characterized an endolysin, PlyGRCS, which displays dose-dependent antimicrobial activity against both planktonic and biofilm S. aureus, including methicillin-resistant S. aureus (MRSA). The spectrum of lytic activity for this enzyme includes all S. aureus and Staphylococcus epidermidis strains tested, but not other Gram-positive pathogens. The contributions of the PlyGRCS putative catalytic and cell wall binding domains were investigated through deletion analysis. The cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain displayed activity by itself, though reduced, indicating the necessity of the binding domain for full activity. In contrast, the SH3_5 binding domain lacked activity but was shown to interact directly with the staphylococcal cell wall via fluorescent microscopy. Site-directed mutagenesis studies determined that the active site residues in the CHAP catalytic domain were C29 and H92, and its catalytic functionality required calcium as a co-factor. Finally, biochemical assays coupled with mass spectrometry analysis determined that PlyGRCS displays both N-acetylmuramoyl-L-alanine amidase and D-alanyl-glycyl endopeptidase hydrolytic activities despite possessing only a single catalytic domain. These results indicate that PlyGRCS has the potential to become a revolutionary therapeutic option to combat bacterial infections.


Asunto(s)
Bacteriófagos/enzimología , Endopeptidasas/metabolismo , Staphylococcus aureus Resistente a Meticilina/virología , Bacteriófagos/genética , Biopelículas , Dominio Catalítico , Pared Celular/química , Dicroismo Circular , Clonación Molecular , Cisteína/química , Endopeptidasas/genética , Histidina/química , Mutagénesis Sitio-Dirigida , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Staphylococcus epidermidis/virología
17.
J Am Chem Soc ; 137(1): 30-3, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25490521

RESUMEN

The ability to detect DNA modification sites at single base resolution could significantly advance studies regarding DNA adduct levels, which are extremely difficult to determine. Artificial nucleotides that are specifically incorporated opposite a modified DNA site offer a potential strategy for detection of such sites by DNA polymerase-based systems. Here we investigate the action of newly synthesized base-modified benzimidazole-derived 2'-deoxynucleoside-5'-O-triphosphates on DNA polymerases when performing translesion DNA synthesis past the pro-mutagenic DNA adduct O(6)-benzylguanine (O(6)-BnG). We found that a mutated form of KlenTaq DNA polymerase, i.e., KTqM747K, catalyzed O(6)-BnG adduct-specific processing of the artificial BenziTP in favor of the natural dNTPs. Steady-state kinetic parameters revealed that KTqM747K catalysis of BenziTP is 25-fold more efficient for template O(6)-BnG than G, and 5-fold more efficient than natural dTMP misincorporation in adduct bypass. Furthermore, the nucleotide analogue BenziTP is required for full-length product formation in O(6)-BnG bypass, as without BenziTP the polymerase stalls at the adduct site. By combining the KTqM747K polymerase and BenziTP, a first round of DNA synthesis enabled subsequent amplification of Benzi-containing DNA. These results advance the development of technologies for detecting DNA adducts.


Asunto(s)
Aductos de ADN/química , Aductos de ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos/química , Nucleótidos/metabolismo , Aductos de ADN/genética , Estructura Molecular
18.
Chem Commun (Camb) ; 50(73): 10707-9, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-25078035

RESUMEN

There is a strong interest in studying the cellular uptake of silica nanoparticles, particularly at medically relevant concentrations (ppb-ppm range) to understand their toxicology. At present, uptake analysis at these exposure levels is impeded by the high silica background concentration. Here we describe the use of DNA encapsulated within silica particles as a tool to quantify silica nanoparticles in in vitro cell-uptake experiments at low concentrations (down to 10 fg cell(-1)).


Asunto(s)
Sondas de ADN/química , Sondas de ADN/metabolismo , Nanopartículas/análisis , Nanopartículas/metabolismo , Reacción en Cadena de la Polimerasa , Dióxido de Silicio/análisis , Dióxido de Silicio/metabolismo , Línea Celular Tumoral , Humanos , Microscopía Confocal , Nanopartículas/química , Tamaño de la Partícula , Dióxido de Silicio/química
19.
PLoS One ; 9(1): e85972, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24475065

RESUMEN

Here we present vB_BanS-Tsamsa, a novel temperate phage isolated from Bacillus anthracis, the agent responsible for anthrax infections in wildlife, livestock and humans. Tsamsa phage is a giant siphovirus (order Caudovirales), featuring a long, flexible and non-contractile tail of 440 nm (not including baseplate structure) and an isometric head of 82 nm in diameter. We induced Tsamsa phage in samples from two different carcass sites in Etosha National Park, Namibia. The Tsamsa phage genome is the largest sequenced Bacillus siphovirus, containing 168,876 bp and 272 ORFs. The genome features an integrase/recombinase enzyme, indicative of a temperate lifestyle. Among bacterial strains tested, the phage infected only certain members of the Bacillus cereus sensu lato group (B. anthracis, B. cereus and B. thuringiensis) and exhibited moderate specificity for B. anthracis. Tsamsa lysed seven out of 25 B. cereus strains, two out of five B. thuringiensis strains and six out of seven B. anthracis strains tested. It did not lyse B. anthracis PAK-1, an atypical strain that is also resistant to both gamma phage and cherry phage. The Tsamsa endolysin features a broader lytic spectrum than the phage host range, indicating possible use of the enzyme in Bacillus biocontrol.


Asunto(s)
Bacillus anthracis/virología , Equidae/microbiología , Filogenia , Siphoviridae/genética , Microbiología del Suelo , Animales , Secuencia de Bases , Teorema de Bayes , Demografía , Endopeptidasas/genética , Endopeptidasas/metabolismo , Genoma Viral/genética , Modelos Genéticos , Datos de Secuencia Molecular , Namibia , Análisis de Secuencia de ADN , Siphoviridae/patogenicidad , Siphoviridae/ultraestructura , Especificidad de la Especie
20.
Bacteriophage ; 2(2): 89-97, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23050219

RESUMEN

Two inducible temperate bacteriophages ΦS9 and ΦS63 from Clostridium perfringens were sequenced and analyzed. Isometric heads and long non-contractile tails classify ΦS9 and ΦS63 in the Siphoviridae family, and their genomes consist of 39,457 bp (ΦS9) and 33,609 bp (ΦS63) linear dsDNA, respectively. ΦS63 has 3'-overlapping cohesive genome ends, whereas ΦS9 is the first Clostridium phage featuring an experimentally proven terminally redundant and circularly permuted genome. A total of 50 and 43 coding sequences were predicted for ΦS9 and ΦS63, respectively, organized into 6 distinct lifestyle-associated modules typical for temperate Siphoviruses. Putative functions could be assigned to 26 gene products of ΦS9, and to 25 of ΦS63. The ΦS9 attB attachment and insertion site is located in a non-coding region upstream of a putative phosphorylase gene. Interestingly, ΦS63 integrates into the 3' part of sigK in C. perfringens, and represents the first functional skin-element-like phage described for this genus. With respect to possible effects of lysogeny, we did not obtain evidence that ΦS9 may influence sporulation of a lysogenized host. In contrast, interruption of sigK, a sporulation associated gene in various bacteria, by the ΦS63 prophage insertion is more likely to affect sporulation of its carrier.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...