Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1344346, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390320

RESUMEN

Introduction: Conformationally stabilized Env trimers have been developed as antigens for the induction of neutralizing antibodies against HIV-1. However, the non-glycosylated immunodominant base of these soluble antigens may compete with the neutralizing antibody response. This has prompted attempts to couple Env trimers to organic or inorganic nanoparticles with the base facing towards the carrier. Such a site-directed coupling could not only occlude the base of the trimer, but also enhance B cell activation by repetitive display. Methods: To explore the effect of an ordered display of HIV-1 Env on microspheres on the activation of Env-specific B cells we used Bind&Bite, a novel covalent coupling approach for conformationally sensitive antigens based on heterodimeric coiled-coil peptides. By engineering a trimeric HIV-1 Env protein with a basic 21-aa peptide (Peptide K) extension at the C-terminus, we were able to covalently biotinylate the antigen in a site-directed fashion using an acidic complementary peptide (Peptide E) bearing a reactive site and a biotin molecule. This allowed us to load our antigen onto streptavidin beads in an oriented manner. Results: Microspheres coated with HIV-1 Env through our Bind&Bite system showed i) enhanced binding by conformational anti-HIV Env broadly neutralizing antibodies (bNAbs), ii) reduced binding activity by antibodies directed towards the base of Env, iii) higher Env-specific B cell activation, and iv) were taken-up more efficiently after opsonization compared to beads presenting HIV-1 Env in an undirected orientation. Discussion: In comparison to site-directed biotinylation via the Avi-tag, Bind&Bite, offers greater flexibility with regard to alternative covalent protein modifications, allowing selective modification of multiple proteins via orthogonal coiled-coil peptide pairs. Thus, the Bind&Bite coupling approach via peptide K and peptide E described in this study offers a valuable tool for nanoparticle vaccine design where surface conjugation of correctly folded antigens is required.


Asunto(s)
Seropositividad para VIH , VIH-1 , Humanos , Anticuerpos Anti-VIH , Anticuerpos Neutralizantes , Péptidos , Fagocitosis
2.
RSC Chem Biol ; 4(10): 794-803, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37799587

RESUMEN

Ensuring site-selectivity in covalent chemical modification of proteins is one of the major challenges in chemical biology and related biomedical disciplines. Most current strategies either utilize the selectivity of proteases, or are based on reactions involving the thiol groups of cysteine residues. We have modified a pair of heterodimeric coiled-coil peptides to enable the selective covalent stabilization of the dimer without using enzymes or cysteine moieties. Fusion of one peptide to the protein of interest, in combination with linking the desired chemical modification to the complementary peptide, facilitates stable, regio-selective attachment of the chemical moiety to the protein, through the formation of the covalently stabilized coiled-coil. This ligation method, which is based on the formation of isoeptide and squaramide bonds, respectively, between the coiled-coil peptides, was successfully used to selectively modify the HIV-1 envelope glycoprotein. Covalent stabilization of the coiled-coil also facilitated truncation of the peptides by one heptad sequence. Furthermore, selective addressing of individual positions of the peptides enabled the generation of mutually selective coiled-coils. The established method, termed Bind&Bite, can be expected to be beneficial for a range of biotechnological and biomedical applications, in which chemical moieties need to be stably attached to proteins in a site-selective fashion.

3.
Biology (Basel) ; 12(6)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37372110

RESUMEN

PG16 is a broadly neutralizing antibody that binds to the gp120 subunit of the HIV-1 Env protein. The major interaction site is formed by the unusually long complementarity determining region (CDR) H3. The CDRH3 residue Tyr100H is known to represent a tyrosine sulfation site; however, this modification is not present in the experimental complex structure of PG16 with full-length HIV-1 Env. To investigate the role of sulfation for this complex, we modeled the sulfation of Tyr100H and compared the dynamics and energetics of the modified and unmodified complex by molecular dynamics simulations at the atomic level. Our results show that sulfation does not affect the overall conformation of CDRH3, but still enhances gp120 interactions both at the site of modification and for the neighboring residues. This stabilization affects not only protein-protein contacts, but also the interactions between PG16 and the gp120 glycan shield. Furthermore, we also investigated whether PG16-CDRH3 is a suitable template for the development of peptide mimetics. For a peptide spanning residues 93-105 of PG16, we obtained an experimental EC50 value of 3nm for the binding of gp120 to the peptide. This affinity can be enhanced by almost one order of magnitude by artificial disulfide bonding between residues 99 and 100F. In contrast, any truncation results in significantly lower affinity, suggesting that the entire peptide segment is involved in gp120 recognition. Given their high affinity, it should be possible to further optimize the PG16-derived peptides as potential inhibitors of HIV invasion.

4.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36145260

RESUMEN

The replication of human cytomegalovirus (HCMV) involves a process termed nuclear egress, which enables translocation of newly formed viral capsids from the nucleus into the cytoplasm. The HCMV core nuclear egress complex (core NEC), a heterodimer of viral proteins pUL50 and pUL53, is therefore considered a promising target for new antiviral drugs. We have recently shown that a 29-mer peptide presenting an N-terminal alpha-helical hook-like segment of pUL53, through which pUL53 interacts with pUL50, binds to pUL50 with high affinity, and inhibits the pUL50-pUL53 interaction in vitro. Here, we show that this peptide is also able to interfere with HCMV infection of cells, as well as with core NEC formation in HCMV-infected cells. As the target of the peptide, i.e., the pUL50-pUL53 interaction, is localized at the inner nuclear membrane of the cell, the peptide had to be equipped with translocation moieties that facilitate peptide uptake into the cell and the nucleus, respectively. For the resulting fusion peptide (NLS-CPP-Hook), specific cellular and nuclear uptake into HFF cells, as well as inhibition of infection with HCMV, could be demonstrated, further substantiating the HCMV core NEC as a potential antiviral target.

5.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35682988

RESUMEN

Based on the structure of a de novo designed miniprotein (LCB1) in complex with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, we have generated and characterized truncated peptide variants of LCB1, which present only two of the three LCB1 helices, and which fully retained the virus neutralizing potency against different SARS-CoV-2 variants of concern (VOC). This antiviral activity was even 10-fold stronger for a cyclic variant of the two-helix peptides, as compared to the full-length peptide. Furthermore, the proteolytic stability of the cyclic peptide was substantially improved, rendering it a better potential candidate for SARS-CoV-2 therapy. In a more mechanistic approach, the peptides also served as tools to dissect the role of individual mutations in the RBD for the susceptibility of the resulting virus variants to neutralization by the peptides. As the peptides reported here were generated through chemical synthesis, rather than recombinant protein expression, they are amenable to further chemical modification, including the incorporation of a wide range of non-proteinogenic amino acids, with the aim to further stabilize the peptides against proteolytic degradation, as well as to improve the strength, as well the breadth, of their virus neutralizing capacity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Péptidos/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
6.
J Biol Chem ; 298(3): 101625, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35074430

RESUMEN

Varicella-zoster virus (VZV) is a human pathogen from the α-subfamily of herpesviruses. The VZV Orf24-Orf27 complex represents the essential viral core nuclear egress complex (NEC) that orchestrates the egress of the preassembled virus capsids from the nucleus. While previous studies have primarily emphasized that the architecture of core NEC complexes is highly conserved among herpesviruses, the present report focuses on subfamily-specific structural and functional features that help explain the differences in the autologous versus nonautologous interaction patterns observed for NEC formation across herpesviruses. Here, we describe the crystal structure of the Orf24-Orf27 complex at 2.1 Å resolution. Coimmunoprecipitation and confocal imaging data show that Orf24-Orf27 complex formation displays some promiscuity in a herpesvirus subfamily-restricted manner. At the same time, analysis of thermodynamic parameters of NEC formation of three prototypical α-, ß-, and γ herpesviruses, i.e., VZV, human cytomegalovirus (HCMV), and Epstein-Barr virus (EBV), revealed highly similar binding affinities for the autologous interaction with specific differences in enthalpy and entropy. Computational alanine scanning, structural comparisons, and mutational data highlight intermolecular interactions shared among α-herpesviruses that are clearly distinct from those seen in ß- and γ-herpesviruses, including a salt bridge formed between Orf24-Arg167 and Orf27-Asp126. This interaction is located outside of the hook-into-groove interface and contributes significantly to the free energy of complex formation. Combined, these data explain distinct properties of specificity and permissivity so far observed in herpesviral NEC interactions. These findings will prove valuable in attempting to target multiple herpesvirus core NECs with selective or broad-acting drug candidates.


Asunto(s)
Herpesvirus Humano 3 , Membrana Nuclear , Proteínas Virales , Cristalografía por Rayos X , Herpesvirus Humano 3/química , Herpesvirus Humano 3/genética , Humanos , Membrana Nuclear/química , Membrana Nuclear/genética , Proteínas Virales/química , Proteínas Virales/genética , Liberación del Virus
7.
Alzheimers Res Ther ; 14(1): 15, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35063014

RESUMEN

BACKGROUND: Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder that mainly affects older adults. One of the pathological hallmarks of AD is abnormally aggregated Tau protein that forms fibrillar deposits in the brain. In AD, Tau pathology correlates strongly with clinical symptoms, cognitive dysfunction, and neuronal death. METHODS: We aimed to develop novel therapeutic D-amino acid peptides as Tau fibrillization inhibitors. It has been previously demonstrated that D-amino acid peptides are protease stable and less immunogenic than L-peptides, and these characteristics may render them suitable for in vivo applications. Using a phage display procedure against wild type full-length Tau (TauFL), we selected a novel Tau binding L-peptide and synthesized its D-amino acid version ISAD1 and its retro inversed form, ISAD1rev, respectively. RESULTS: While ISAD1rev inhibited Tau aggregation only moderately, ISAD1 bound to Tau in the aggregation-prone PHF6 region and inhibited fibrillization of TauFL, disease-associated mutant full-length Tau (TauFLΔK, TauFL-A152T, TauFL-P301L), and pro-aggregant repeat domain Tau mutant (TauRDΔK). ISAD1 and ISAD1rev induced the formation of large high molecular weight TauFL and TauRDΔK oligomers that lack proper Thioflavin-positive ß-sheet conformation even at lower concentrations. In silico modeling of ISAD1 Tau interaction at the PHF6 site revealed a binding mode similar to those known for other PHF6 binding peptides. Cell culture experiments demonstrated that ISAD1 and its inverse form are taken up by N2a-TauRDΔK cells efficiently and prevent cytotoxicity of externally added Tau fibrils as well as of internally expressed TauRDΔK. CONCLUSIONS: ISAD1 and related peptides may be suitable for therapy development of AD by promoting off-pathway assembly of Tau, thus preventing its toxicity.


Asunto(s)
Enfermedad de Alzheimer , Péptidos , Proteínas tau , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Aminoácidos/uso terapéutico , Células Cultivadas , Humanos , Péptidos/uso terapéutico , Conformación Proteica en Lámina beta , Proteínas tau/metabolismo , Proteínas tau/toxicidad
8.
Eur J Immunol ; 52(5): 770-783, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34355795

RESUMEN

TRIANNI mice carry an entire set of human immunoglobulin V region gene segments and are a powerful tool to rapidly isolate human monoclonal antibodies. After immunizing these mice with DNA encoding the spike protein of SARS-CoV-2 and boosting with spike protein, we identified 29 hybridoma antibodies that reacted with the SARS-CoV-2 spike protein. Nine antibodies neutralize SARS-CoV-2 infection at IC50 values in the subnanomolar range. ELISA-binding studies and DNA sequence analyses revealed one cluster of three clonally related neutralizing antibodies that target the receptor-binding domain and compete with the cellular receptor hACE2. A second cluster of six clonally related neutralizing antibodies bind to the N-terminal domain of the spike protein without competing with the binding of hACE2 or cluster 1 antibodies. SARS-CoV-2 mutants selected for resistance to an antibody from one cluster are still neutralized by an antibody from the other cluster. Antibodies from both clusters markedly reduced viral spread in mice transgenic for human ACE2 and protected the animals from SARS-CoV-2-induced weight loss. The two clusters of potent noncompeting SARS-CoV-2 neutralizing antibodies provide potential candidates for therapy and prophylaxis of COVID-19. The study further supports transgenic animals with a human immunoglobulin gene repertoire as a powerful platform in pandemic preparedness initiatives.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Ratones , SARS-CoV-2
9.
Chembiochem ; 22(24): 3443-3451, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34605595

RESUMEN

With the emergence of novel viruses, the development of new antivirals is more urgent than ever. A key step in human immunodeficiency virus type 1 (HIV-1) infection is six-helix bundle formation within the envelope protein subunit gp41. Selective disruption of bundle formation by peptides has been shown to be effective; however, these drugs, exemplified by T20, are prone to rapid clearance from the patient. The incorporation of non-natural amino acids is known to improve these pharmacokinetic properties. Here, we evaluate a peptide inhibitor in which a critical Ile residue is replaced by fluorinated analogues. We characterized the influence of the fluorinated analogues on the biophysical properties of the peptide. Furthermore, we show that the fluorinated peptides can block HIV-1 infection of target cells at nanomolar levels. These findings demonstrate that fluorinated amino acids are appropriate tools for the development of novel peptide therapeutics.


Asunto(s)
Fármacos Anti-VIH/farmacología , Proteína gp41 de Envoltorio del VIH/antagonistas & inhibidores , Inhibidores de Fusión de VIH/farmacología , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Péptidos/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Proteína gp41 de Envoltorio del VIH/metabolismo , Inhibidores de Fusión de VIH/síntesis química , Inhibidores de Fusión de VIH/química , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Halogenación , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos/síntesis química , Péptidos/química
10.
Sci Rep ; 11(1): 10509, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006920

RESUMEN

Protein stability limitations often hamper the exploration of proteins as drug targets. Here, we show that the application of PROSS server algorithms to the ligand-binding domain of human estrogen receptor alpha (hERα) enabled the development of variant ERPRS* that comprises 24 amino acid substitutions and exhibits multiple improved characteristics. The protein displays enhanced production rates in E. coli, crystallizes readily and its thermal stability is increased significantly by 23 °C. hERα is a nuclear receptor (NR) family member. In NRs, protein function is allosterically regulated by its interplay with small molecule effectors and the interaction with coregulatory proteins. The in-depth characterization of ERPRS* shows that these cooperative effects are fully preserved despite that 10% of all residues were substituted. Crystal structures reveal several salient features, i.e. the introduction of a tyrosine corner in a helix-loop-helix segment and the formation of a novel surface salt bridge network possibly explaining the enhanced thermal stability. ERPRS* shows that prior successes in computational approaches for stabilizing proteins can be extended to proteins with complex allosteric regulatory behaviors as present in NRs. Since NRs including hERα are implicated in multiple diseases, our ERPRS* variant shows significant promise for facilitating the development of novel hERα modulators.


Asunto(s)
Receptor alfa de Estrógeno/genética , Algoritmos , Regulación Alostérica , Sustitución de Aminoácidos , Biología Computacional , Receptor alfa de Estrógeno/química , Receptor alfa de Estrógeno/metabolismo , Humanos , Unión Proteica , Conformación Proteica , Estabilidad Proteica
11.
Viruses ; 13(3)2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799898

RESUMEN

Herpesviral nuclear egress is a regulated process shared by all family members, ensuring the efficient cytoplasmic release of viral capsids. In the case of human cytomegalovirus (HCMV), the core of the nuclear egress complex (NEC) consists of the pUL50-pUL53 heterodimer that builds hexameric lattices for capsid binding and multicomponent interaction, including NEC-associated host factors. A characteristic feature of NEC interaction is the N-terminal hook structure of pUL53 that binds to an alpha-helical groove of pUL50, thus termed as hook-into-groove interaction. This central regulatory element is essential for viral replication and shows structural-functional conservation, which has been postulated as a next-generation target of antiviral strategies. However, a solid validation of this concept has been missing. In the present study, we focused on the properties of oligomeric HCMV core NEC interaction and the antiviral activity of specifically targeted prototype inhibitors. Our data suggest the following: (i) transiently expressed, variably tagged versions of HCMV NEC proteins exert hook-into-groove complexes, putatively in oligomeric assemblies that are distinguishable from heterodimers, as shown by in vitro assembly and coimmunoprecipitation approaches; (ii) this postulated oligomeric binding pattern was further supported by the use of a pUL50::pUL53 fusion construct also showing a pronounced multi-interaction potency; (iii) using confocal imaging cellular NEC-associated proteins were found partly colocalized with the tagged core NECs; (iv) a small inhibitory molecule, recently identified by an in vitro binding inhibition assay, was likewise active in blocking pUL50-pUL53 oligomeric assembly and in exerting antiviral activity in HCMV-infected fibroblasts. In summary, the findings refine the previous concept of HCMV core NEC formation and nominate this drug-accessible complex as a validated antiviral drug target.


Asunto(s)
Antivirales/farmacología , Infecciones por Citomegalovirus/tratamiento farmacológico , Citomegalovirus/crecimiento & desarrollo , Proteínas Virales/metabolismo , Liberación del Virus/efectos de los fármacos , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Línea Celular , Núcleo Celular/virología , Citomegalovirus/efectos de los fármacos , Infecciones por Citomegalovirus/patología , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Membrana Nuclear/virología , Unión Proteica
12.
Viruses ; 13(3)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809234

RESUMEN

Nuclear egress is an essential process in the replication of human cytomegalovirus (HCMV), as it enables the migration of newly formed viral capsids from the nucleus into the cytoplasm. Inhibition of the HCMV core nuclear egress complex (core NEC), composed of viral proteins pUL50 and pUL53, has been proposed as a potential new target for the treatment of HCMV infection and disease. Here, we present a new type of small molecule inhibitors of HCMV core NEC formation, which inhibit the pUL50-pUL53 interaction at nanomolar concentrations. These inhibitors, i.e., verteporfin and merbromin, were identified through the screening of the Prestwick Chemical Library® of approved drug compounds. The inhibitory effect of merbromin is both compound- and target-specific, as no inhibition was seen for other mercury-organic compounds. Furthermore, merbromin does not inhibit an unrelated protein-protein interaction either. More importantly, merbromin was found to inhibit HCMV infection of cells in three different assays, as well as to disrupt HCMV NEC nuclear rim formation. Thus, while not being an ideal drug candidate by itself, merbromin may serve as a blueprint for small molecules with high HCMV core NEC inhibitory potential, as candidates for novel anti-herpesviral drugs.


Asunto(s)
Antivirales/farmacología , Infecciones por Citomegalovirus/virología , Citomegalovirus/metabolismo , Merbromina/farmacología , Proteínas Virales/metabolismo , Virión/metabolismo , Células Cultivadas , Fibroblastos , Humanos , Cultivo Primario de Células , Liberación del Virus , Replicación Viral
13.
ChemMedChem ; 16(8): 1290-1296, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33378104

RESUMEN

Co-infection with the human pegivirus 1 (HPgV-1) often has a beneficial effect on disease progression in HIV-1-infected individuals. Several HPgV-1 proteins and peptides, including a 20-mer peptide (P6-2) derived from the N-terminal region of the HPgV-1 surface protein E2, have been associated with this phenomenon, which is referred to as viral interference. We identified the cysteine residues, the hydrophobic core tetrapeptide, as well as the C-terminal negative charge as key factors for the HIV-1 inhibitory activity of P6-2. Analysis of mutations in P6-2-resistant HIV-1 indicated a binding site for the peptide in the HIV-1 envelope glycoprotein gp120. In fact, P6-2 was shown to bind to soluble gp120, as well as to a peptide presenting the gp120 V3 loop. Furthermore, the HIV-1 inhibitory activity of P6-2 could be revoked by the V3 loop peptide, thus indicating a molecular mechanism that involves interaction of P6-2 with the gp120 V3 loop.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/metabolismo , Fragmentos de Péptidos/metabolismo , Interferencia Viral/fisiología , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Virus GB-C/química , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , VIH-1/química , Mutación , Unión Proteica
14.
Viruses ; 12(6)2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599939

RESUMEN

Herpesviruses uniquely express two essential nuclear egress-regulating proteins forming a heterodimeric nuclear egress complex (core NEC). These core NECs serve as hexameric lattice-structured platforms for capsid docking and recruit viral and cellular NEC-associated factors that jointly exert nuclear lamina as well as membrane-rearranging functions (multicomponent NEC). The regulation of nuclear egress has been profoundly analyzed for murine and human cytomegaloviruses (CMVs) on a mechanistic basis, followed by the description of core NEC crystal structures, first for HCMV, then HSV-1, PRV and EBV. Interestingly, the highly conserved structural domains of these proteins stand in contrast to a very limited sequence conservation of the key amino acids within core NEC-binding interfaces. Even more surprising, although a high functional consistency was found when regarding the basic role of NECs in nuclear egress, a clear specification was identified regarding the limited, subfamily-spanning binding properties of core NEC pairs and NEC multicomponent proteins. This review summarizes the evolving picture of the relationship between sequence coevolution, structural conservation and properties of NEC interaction, comparing HCMV to α-, ß- and γ-herpesviruses. Since NECs represent substantially important elements of herpesviral replication that are considered as drug-accessible targets, their putative translational use for antiviral strategies is discussed.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Alphaherpesvirinae/genética , Citomegalovirus/genética , Gammaherpesvirinae/genética , Liberación del Virus/genética , Transporte Activo de Núcleo Celular/fisiología , Alphaherpesvirinae/metabolismo , Secuencia de Aminoácidos/genética , Cápside/metabolismo , Proteínas de la Cápside/genética , Citomegalovirus/metabolismo , Gammaherpesvirinae/metabolismo , Humanos , Membrana Nuclear/metabolismo , Lámina Nuclear/fisiología , Liberación del Virus/fisiología
15.
Nat Commun ; 11(1): 1733, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32265441

RESUMEN

Dysregulation of extracellular signal-regulated kinases (ERK1/2) is linked to several diseases including heart failure, genetic syndromes and cancer. Inhibition of ERK1/2, however, can cause severe cardiac side-effects, precluding its wide therapeutic application. ERKT188-autophosphorylation was identified to cause pathological cardiac hypertrophy. Here we report that interference with ERK-dimerization, a prerequisite for ERKT188-phosphorylation, minimizes cardiac hypertrophy without inducing cardiac adverse effects: an ERK-dimerization inhibitory peptide (EDI) prevents ERKT188-phosphorylation, nuclear ERK1/2-signaling and cardiomyocyte hypertrophy, protecting from pressure-overload-induced heart failure in mice whilst preserving ERK1/2-activity and cytosolic survival signaling. We also examine this alternative ERK1/2-targeting strategy in cancer: indeed, ERKT188-phosphorylation is strongly upregulated in cancer and EDI efficiently suppresses cancer cell proliferation without causing cardiotoxicity. This powerful cardio-safe strategy of interfering with ERK-dimerization thus combats pathological ERK1/2-signaling in heart and cancer, and may potentially expand therapeutic options for ERK1/2-related diseases, such as heart failure and genetic syndromes.


Asunto(s)
Cardiotoxicidad , Péptidos de Penetración Celular/farmacología , Dimerización , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Técnicas de Cultivo de Célula , Péptidos de Penetración Celular/síntesis química , Péptidos de Penetración Celular/toxicidad , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Sistemas de Liberación de Medicamentos , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos C57BL , Medicina Molecular , Ratas , Ratas Sprague-Dawley , Transducción de Señal
16.
J Biol Chem ; 295(10): 3189-3201, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31980459

RESUMEN

Herpesviruses uniquely express two essential nuclear egress-regulating proteins forming a heterodimeric basic structure of the nuclear egress complex (core NEC). These core NECs serve as a hexameric lattice-structured platform for capsid docking and recruit viral and cellular NEC-associated factors that jointly exert nuclear lamina- and membrane-rearranging functions (multicomponent NEC). Here, we report the X-ray structures of ß- and γ-herpesvirus core NECs obtained through an innovative recombinant expression strategy based on NEC-hook::NEC-groove protein fusion constructs. This approach yielded the first structure of γ-herpesviral core NEC, namely the 1.56 Å structure of Epstein-Barr virus (EBV) BFRF1-BFLF2, as well as an increased resolution 1.48 Å structure of human cytomegalovirus (HCMV) pUL50-pUL53. Detailed analysis of these structures revealed that the prominent hook segment is absolutely required for core NEC formation and contributes approximately 80% of the interaction surface of the globular domains of NEC proteins. Moreover, using HCMV::EBV hook domain swap constructs, computational prediction of the roles of individual hook residues for binding, and quantitative binding assays with synthetic peptides presenting the HCMV- and EBV-specific NEC hook sequences, we characterized the unique hook-into-groove NEC interaction at various levels. Although the overall physicochemical characteristics of the protein interfaces differ considerably in these ß- and γ-herpesvirus NECs, the binding free energy contributions of residues displayed from identical positions are similar. In summary, the results of our study reveal critical details of the molecular mechanism of herpesviral NEC interactions and highlight their potential as an antiviral drug target.


Asunto(s)
Betaherpesvirinae/metabolismo , Gammaherpesvirinae/metabolismo , Proteínas Virales/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Citomegalovirus/metabolismo , Células HeLa , Herpesvirus Humano 4/metabolismo , Humanos , Péptidos/química , Péptidos/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Resonancia por Plasmón de Superficie , Proteínas Virales/genética , Proteínas Virales/metabolismo
17.
J Proteome Res ; 19(2): 805-818, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31902209

RESUMEN

Nonenzymatic post-translational protein modifications (nePTMs) affect the nutritional, physiological, and technological properties of proteins in food and in vivo. In contrast to the usual targeted analyses, the present study determined nePTMs in processed milk in a truly untargeted proteomic approach. Thus, it was possible to determine to which extent known nePTM structures explain protein modifications in processed milk and to detect and identify novel products. The method combined ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with bioinformatic data analysis by the software XCMS. The nePTMs detected by untargeted profiling of a ß-lactoglobulin-lactose model were incorporated in a sensitive scheduled multiple reaction monitoring method to analyze these modifications in milk samples and to monitor their reaction kinetics during thermal treatment. Additionally, we identified the structures of unknown modifications. Lactosylation, carboxymethylation, formylation of lysine and N-terminus, glycation of arginine, oxidation of methionine, tryptophan, and cysteine, oxidative deamination of N-terminus, and deamidation of asparagine and glutamine were the most important reactions of ß-lactoglobulin during milk processing. The isomerization of aspartic acid was observed for the first time in milk products, and N-terminal 4-imidazolidinone was identified as a novel nePTM.


Asunto(s)
Proteínas de la Leche , Leche , Lactoglobulinas , Leche/metabolismo , Proteínas de la Leche/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica
19.
AIDS ; 32(14): 1951-1957, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-29912064

RESUMEN

OBJECTIVE(S): Up to 40% of HIV-1 infected individuals are coinfected with human pegivirus type 1 (HPgV-1). The majority of studies, but not all, have reported a beneficial effect of HPgV-1 coinfection on HIV-1 disease progression. So far, the impact of different HPgV-1 genotypes on different HIV-1 subtypes remains unclear. METHODS: Peptides derived from HPgV-1 envelope protein E2, and representing different viral genotypes, were synthesized using Fmoc/t-Bu-based solid phase peptide synthesis. The inhibitory effect of these peptides on the infection of reporter cell lines was tested using an HIV-1 subtype panel representing clades A (n = 2), AG (n = 2), B (n = 6), C (n = 2), D (n = 2), F (n = 2), G (n = 1), G/H (n = 1), and group O (n = 2). RESULTS: HIV-1 infection was blocked more efficiently by peptides derived from HPgV-1 GT2 than GT1 (P = 0.05). The HIV-1 subtype did not affect the degree of inhibition by a peptide derived from HPgV-1 GT2. All CXCR4-/dual-tropic isolates (n = 12), but only half (four out of eight) CCR5-tropic viruses were inhibited by this peptide (P = 0.014). CONCLUSION: Our data indicate that the inhibitory effect of peptides derived from HPgV-1 E2 protein is dependent on the genotype, suggesting that coinfection with HPgV-1 GT1 is less likely to confer a beneficial effect on HIV-1 disease progression than GT2. The preferential suppression of more pathogenic CXCR4-tropic HIV-1 by peptides derived from HPgV-1 GT2 may explain the favorable effect in patients harboring these HIV-1 isolates. Consequently, HPgV-1 genotype and HIV-1 coreceptor tropism are likely determinants for the beneficial effect of HPgV-1 co-infection in HIV-1-infected individuals.


Asunto(s)
Flaviviridae/fisiología , VIH-1/fisiología , Interferencia Viral , Tropismo Viral , Internalización del Virus/efectos de los fármacos , Humanos , Péptidos/metabolismo , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/metabolismo
20.
Viruses ; 10(4)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29662026

RESUMEN

Although effective antibody-based vaccines have been developed against multiple viruses, such approaches have so far failed for the human immunodeficiency virus type 1 (HIV-1). Despite the success of anti-retroviral therapy (ART) that has turned HIV-1 infection into a chronic disease and has reduced the number of new infections worldwide, a vaccine against HIV-1 is still urgently needed. We discuss here the major reasons for the failure of "classical" vaccine approaches, which are mostly due to the biological properties of the virus itself. HIV-1 has developed multiple mechanisms of immune escape, which also account for vaccine failure. So far, no vaccine candidate has been able to induce broadly neutralizing antibodies (bnAbs) against primary patient viruses from different clades. However, such antibodies were identified in a subset of patients during chronic infection and were shown to protect from infection in animal models and to reduce viremia in first clinical trials. Their detailed characterization has guided structure-based reverse vaccinology approaches to design better HIV-1 envelope (Env) immunogens. Furthermore, conserved Env epitopes have been identified, which are promising candidates in view of clinical applications. Together with new vector-based technologies, considerable progress has been achieved in recent years towards the development of an effective antibody-based HIV-1 vaccine.


Asunto(s)
Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/aislamiento & purificación , Descubrimiento de Drogas/métodos , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Descubrimiento de Drogas/tendencias , Evaluación Preclínica de Medicamentos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...