Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34640782

RESUMEN

The annotation of sensor data with semantic metadata is essential to the goals of automation and interoperability in the context of Industry 4.0. In this contribution, we outline a semantic description of quality of data in sensor networks in terms of indicators, metrics and interpretations. The concepts thus defined are consolidated into an ontology that describes quality of data metainformation in heterogeneous sensor networks and methods for the determination of corresponding quality of data dimensions are outlined. By incorporating support for sensor calibration models and measurement uncertainty via a previously derived ontology, a conformity with metrological requirements for sensor data is ensured. A quality description for a calibrated sensor generated using the resulting ontology is presented in the JSON-LD format using the battery level and calibration data as quality indicators. Finally, the general applicability of the model is demonstrated using a series of competency questions.


Asunto(s)
Metadatos , Semántica
2.
Sensors (Basel) ; 21(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809296

RESUMEN

The Internet of Things (IoT) is characterized by a large number of interconnected devices or assets. Measurement instruments in the IoT are typically digital in the sense that their indications are available only as digital output. Moreover, a growing number of IoT sensors contain a built-in pre-processing system, e.g., for compensating unwanted effects. This paper considers the application of metrological principles to such so-called "smart sensors" in the IoT. It addresses the calibration of digital sensors, mathematical and semantic approaches, the communication of data quality and the meaning of traceability for the IoT in general.

3.
J Opt Soc Am A Opt Image Sci Vis ; 33(7): 1370-6, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27409695

RESUMEN

Estimating spectral reflectance has attracted extensive research efforts in color science and machine learning, motivated through a wide range of applications. In many practical situations, prior knowledge is available that ought to be used. Here, we have developed a general Bayesian method that allows the incorporation of prior knowledge from previous monochromator and spectrophotometer measurements. The approach yields analytical expressions for fast and efficient estimation of spectral reflectance. In addition to point estimates, probability distributions are also obtained, which completely characterize the uncertainty associated with the reconstructed spectrum. We demonstrate that, through the incorporation of prior knowledge, our approach yields improved reconstruction results compared with methods that resort to training data only. Our method is particularly useful when the spectral reflectance to be recovered resides beyond the scope of the training data.

4.
Sensors (Basel) ; 10(8): 7621-31, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-22163618

RESUMEN

The compensation of LTI systems and the evaluation of the according uncertainty is of growing interest in metrology. Uncertainty evaluation in metrology ought to follow specific guidelines, and recently two corresponding uncertainty evaluation schemes have been proposed for FIR and IIR filtering. We employ these schemes to compare an FIR and an IIR approach for compensating a second-order LTI system which has relevance in metrology. Our results suggest that the FIR approach is superior in the sense that it yields significantly smaller uncertainties when real-time evaluation of uncertainties is desired.


Asunto(s)
Modelos Teóricos , Incertidumbre , Sistemas de Computación , Pesos y Medidas/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...