Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Genet Couns ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38197741

RESUMEN

Spinal muscular atrophy (SMA) has been reported in both Amish and Mennonite (Plain) communities, and a higher incidence has been observed in certain Mennonite communities compared to the general population. There are several therapies for SMA, but all are most effective in pre-symptomatic newborns. To identify couples from the Wisconsin Plain community who are most likely to have a child with SMA, carrier screening is offered via mailed kits with at-home specimen collection. Our survey data about Plain families' perspectives on genetic testing suggest educational materials are needed for individuals providing informed consent with at-home specimen collection. We therefore developed a Plain population-specific educational trifold brochure about SMA carrier screening by incorporating existing medical education strategies and feedback from Plain community members and their health care providers. Along with the brochure, surveys were included in the kits to assess baseline knowledge about SMA carrier screening ("pre-education") as well as improvement in knowledge after reviewing the brochure and cultural appropriateness of the brochure ("post-education"). Fifty-five testing kits were distributed, and 26 survey pairs (pre- and post-education) were returned and analyzed (response rate 47%). Respondents had high baseline knowledge with an average of 5 of 7 questions (71%) answered correctly on the pre-education survey. Knowledge improved after reviewing the brochure as the average score increased to 6.5 of 7 questions (93%) answered correctly. Questions about risks of having an affected child after positive or negative carrier screening showed the most improvement from the pre-education to post-education surveys. Most respondents indicated the brochure was helpful, was easy to understand, and contained the right amount of information. Overall, incorporating elements of existing medical education strategies with feedback from the target population and stakeholders about appropriate language seems to be an effective method for creating beneficial, culturally responsive educational materials for the Plain population.

2.
Genetics ; 198(4): 1535-58, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25261698

RESUMEN

In many animals, oocytes enter meiosis early in their development but arrest in meiotic prophase I. Oocyte growth, which occurs during this arrest period, enables the acquisition of meiotic competence and the capacity to produce healthy progeny. Meiotic resumption, or meiotic maturation, involves the transition to metaphase I (M phase) and is regulated by intercellular signaling and cyclin-dependent kinase activation. Premature meiotic maturation would be predicted to diminish fertility as the timing of this event, which normally occurs after oocyte growth is complete, is crucial. In the accompanying article in this issue, we identify the highly conserved TRIM-NHL protein LIN-41 as a translational repressor that copurifies with OMA-1 and OMA-2, RNA-binding proteins redundantly required for normal oocyte growth and meiotic maturation. In this article, we show that LIN-41 enables the production of high-quality oocytes and plays an essential role in controlling and coordinating oocyte growth and meiotic maturation. lin-41 null mutants display a striking defect that is specific to oogenesis: pachytene-stage cells cellularize prematurely and fail to progress to diplotene. Instead, these cells activate CDK-1, enter M phase, assemble spindles, and attempt to segregate chromosomes. Translational derepression of the CDK-1 activator CDC-25.3 appears to contribute to premature M-phase entry in lin-41 mutant oocytes. Genetic and phenotypic analyses indicate that LIN-41 and OMA-1/2 exhibit an antagonistic relationship, and we suggest that translational regulation by these proteins could be important for controlling and coordinating oocyte growth and meiotic maturation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Metafase , Oocitos/metabolismo , Profase , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/metabolismo , Ciclo Celular/genética , Femenino , Fertilidad/genética , Expresión Génica , Regulación de la Expresión Génica , Orden Génico , Sitios Genéticos , Genotipo , Masculino , Meiosis/genética , Metafase/genética , Mutación , No Disyunción Genética , Oogénesis/genética , Profase/genética , Dominios y Motivos de Interacción de Proteínas , Empalme del ARN , Espermatogénesis/genética , Factores de Transcripción/química , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...