Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430155

RESUMEN

Stem rust (SR) and leaf rust (LR) are currently the two most important rust diseases of cultivated rye in Central Europe and resistant cultivars promise to prevent yield losses caused by those pathogens. To secure long-lasting resistance, ideally pyramided monogenic resistances and race-nonspecific resistances are applied. To find respective genes, we screened six breeding populations and one testcross population for resistance to artificially inoculated SR and naturally occurring LR in multi-environmental field trials. Five populations were genotyped with a 10K SNP marker chip and one with DArTseqTM. In total, ten SR-QTLs were found that caused a reduction of 5-17 percentage points in stem coverage with urediniospores. Four QTLs thereof were mapped to positions of already known SR QTLs. An additional gene at the distal end of chromosome 2R, Pgs3.1, that caused a reduction of 40 percentage points SR infection, was validated. One SR-QTL on chromosome 3R, QTL-SR4, was found in three populations linked with the same marker. Further QTLs at similar positions, but from different populations, were also found on chromosomes 1R, 4R, and 6R. For SR, additionally seedling tests were used to separate between adult-plant and all-stage resistances and a statistical method accounting for the ordinal-scaled seedling test data was used to map seedling resistances. However, only Pgs3.1 could be detected based on seedling test data, even though genetic variance was observed in another population, too. For LR, in three of the populations, two new large-effect loci (Pr7 and Pr8) on chromosomes 1R and 2R were mapped that caused 34 and 21 percentage points reduction in leaf area covered with urediniospores and one new QTL on chromosome 1R causing 9 percentage points reduction.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad , Resistencia a la Enfermedad/genética , Secale/genética , Enfermedades de las Plantas/genética , Triticum/genética , Fitomejoramiento , Basidiomycota/genética , Plantones/genética
2.
Toxins (Basel) ; 12(11)2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114663

RESUMEN

Ergot caused by Claviceps purpurea is a problem for food and feed security in rye due to the occurrence of toxic ergot alkaloids (EAs). For grain elevators and breeders, a quick, easy-to-handle, and cheap screening assay would have a high economic impact. The study was performed to reveal (1) the covariation of ergot severity (= percentage of sclerotia in harvested grain) and the content of 12 EAs determined by high performance liquid chromatography (HPLC) and (2) the covariation between these traits and results of one commercial enzyme linked immunosorbent assays (ELISA). In total, 372 winter rye samples consisting of a diverse set of genotypes, locations from Germany, Austria, and Poland over two years, and three isolates were analyzed. Ergocornine and α-ergocryptine were detected as major EAs. Ergocristinine occurred as a minor component. Claviceps isolates from different countries showed a similar EA spectrum, but different quantities of individual EAs. A moderate, positive covariation between ergot severity and EA content determined by HPLC was observed across two years (r = 0.53, p < 0.01), but large deviation from the regression was detected. ELISA values did neither correlate with the HPLC results nor with ergot severity. In conclusion, a reliable prediction of the EA content based on ergot severity is, at present, not possible.


Asunto(s)
Claviceps/aislamiento & purificación , Grano Comestible/microbiología , Alcaloides de Claviceps/análisis , Contaminación de Alimentos/análisis , Secale/microbiología , Austria , Cromatografía Líquida de Alta Presión , Claviceps/genética , Ensayo de Inmunoadsorción Enzimática , Genotipo , Alemania , Polonia
3.
Front Plant Sci ; 11: 667, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528509

RESUMEN

Rye stem rust caused by Puccinia graminis f. sp. secalis can be found in all European rye growing regions. When the summers are warm and dry, the disease can cause severe yield losses over large areas. To date only little research was done in Europe to trigger resistance breeding. To our knowledge, all varieties currently registered in Germany are susceptible. In this study, three biparental populations of inbred lines and one testcross population developed for mapping resistance were investigated. Over 2 years, 68-70 genotypes per population were tested, each in three locations. Combining the phenotypic data with genotyping results of a custom 10k Infinium iSelect single nucleotide polymorphism (SNP) array, we identified both quantitatively inherited adult plant resistance and monogenic all-stage resistance. A single resistance gene, tentatively named Pgs1, located at the distal end of chromosome 7R, could be identified in two independently developed populations. With high probability, it is closely linked to a nucleotide-binding leucine-rich repeat (NB-LRR) resistance gene homolog. A marker for a competitive allele-specific polymerase chain reaction (KASP) genotyping assay was designed that could explain 73 and 97% of the genetic variance in each of both populations, respectively. Additional investigation of naturally occurring rye leaf rust (caused by Puccinia recondita ROEBERGE) revealed a gene complex on chromosome 7R. The gene Pgs1 and further identified quantitative trait loci (QTL) have high potential to be used for breeding stem rust resistant rye.

4.
PLoS One ; 6(6): e21026, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21695232

RESUMEN

Fungal infestation on wheat is an increasingly grave nutritional problem in many countries worldwide. Fusarium species are especially harmful pathogens due to their toxic metabolites. In this work we studied volatile compounds released by F. cerealis, F. graminearum, F. culmorum and F. redolens using SPME-GC/MS. By using an electronic nose we were able to differentiate between infected and non-infected wheat grains in the post-harvest chain. Our electronic nose was capable of distinguishing between four wheat Fusaria species with an accuracy higher than 80%.


Asunto(s)
Equipos y Suministros Eléctricos , Microbiología de Alimentos/instrumentación , Fusarium/aislamiento & purificación , Odorantes/análisis , Triticum/microbiología , Fusarium/patogenicidad , Cromatografía de Gases y Espectrometría de Masas , Enfermedades de las Plantas/microbiología , Tecnicas de Microbalanza del Cristal de Cuarzo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...