Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 19(11): e1011837, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38019895

RESUMEN

Neuropilin-1 (Nrp-1) expression on CD8+ T cells has been identified in tumor-infiltrating lymphocytes and in persistent murine gamma-herpes virus infections, where it interferes with the development of long-lived memory T cell responses. In parasitic and acute viral infections, the role of Nrp-1 expression on CD8+ T cells remains unclear. Here, we demonstrate a strong induction of Nrp-1 expression on CD8+ T cells in Plasmodium berghei ANKA (PbA)-infected mice that correlated with neurological deficits of experimental cerebral malaria (ECM). Likewise, the frequency of Nrp-1+CD8+ T cells was significantly elevated and correlated with liver damage in the acute phase of lymphocytic choriomeningitis virus (LCMV) infection. Transcriptomic and flow cytometric analyses revealed a highly activated phenotype of Nrp-1+CD8+ T cells from infected mice. Correspondingly, in vitro experiments showed rapid induction of Nrp-1 expression on CD8+ T cells after stimulation in conjunction with increased expression of activation-associated molecules. Strikingly, T cell-specific Nrp-1 ablation resulted in reduced numbers of activated T cells in the brain of PbA-infected mice as well as in spleen and liver of LCMV-infected mice and alleviated the severity of ECM and LCMV-induced liver pathology. Mechanistically, we identified reduced blood-brain barrier leakage associated with reduced parasite sequestration in the brain of PbA-infected mice with T cell-specific Nrp-1 deficiency. In conclusion, Nrp-1 expression on CD8+ T cells represents a very early activation marker that exacerbates deleterious CD8+ T cell responses during both, parasitic PbA and acute LCMV infections.


Asunto(s)
Coriomeningitis Linfocítica , Malaria Cerebral , Parásitos , Ratones , Animales , Neuropilina-1 , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica , Linfocitos T CD8-positivos/patología , Ratones Endogámicos C57BL
2.
NPJ Vaccines ; 8(1): 8, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737485

RESUMEN

Human cytomegalovirus (HCMV) frequently causes congenital infections, resulting in birth defects and developmental disorders. A vaccine is needed, but unavailable. We analyzed the potential of CMV mutants, lacking their STAT2 antagonists to serve as live attenuated vaccine viruses in mice. Infections with attenuated viruses elicited strong ELISA-reactive binding IgG responses and induced neutralizing antibodies as well as antibodies stimulating cellular Fcγ receptors, including the antibody-dependent cellular cytotoxicity (ADCC)-eliciting receptors FcγRIII/CD16 and FcγRIV. Accordingly, vaccinated mice were fully protected against challenge infections. Female mice vaccinated prior to gestation transmitted CMV-specific IgG to their offspring, which protected the progeny from perinatal infections in a mouse model for congenital CMV disease. To define the role of maternal antibodies, female mice either capable or incapable of producing antibodies were vaccinated and subsequently bred to males of the opposite genotype. Challenge infections of the genotypically identical F1 generation revealed the indispensability of maternal antibodies for vaccine-induced protection against cytomegaloviruses.

3.
Front Immunol ; 11: 573526, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33162987

RESUMEN

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the most pressing medical and socioeconomic challenge. Constituting important correlates of protection, the determination of virus-neutralizing antibodies (NAbs) is indispensable for convalescent plasma selection, vaccine candidate evaluation, and immunity certificates. In contrast to standard serological ELISAs, plaque reduction neutralization tests (PRNTs) are laborious, time-consuming, expensive, and restricted to specialized laboratories. To replace microscopic counting-based SARS-CoV-2 PRNTs by a novel assay exempt from genetically modified viruses, which are inapplicable in most diagnostics departments, we established a simple, rapid, and automated SARS-CoV-2 neutralization assay employing an in-cell ELISA (icELISA) approach. After optimization of various parameters such as virus-specific antibodies, cell lines, virus doses, and duration of infection, SARS-CoV-2-infected cells became amenable as direct antigen source for quantitative icELISA. Antiviral agents such as human sera containing NAbs or antiviral interferons dose dependently reduced the SARS-CoV-2-specific signal. Applying increased infectious doses, the icELISA-based neutralization test (icNT) was superior to PRNT in discriminating convalescent sera with high from those with intermediate neutralizing capacities. In addition, the icNT was found to be specific, discriminating between SARS-CoV-2-specific NAbs and those raised against other coronaviruses. Altogether, the SARS-CoV-2 icELISA test allows rapid (<48 h in total, read-out in seconds) and automated quantification of virus infection in cell culture to evaluate the efficacy of NAbs and antiviral drugs using reagents and equipment present in most routine diagnostics departments.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Prueba de COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/uso terapéutico , Antivirales/farmacología , COVID-19/terapia , COVID-19/virología , Células CACO-2 , Chlorocebus aethiops , Pruebas Diagnósticas de Rutina/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Inmunización Pasiva , Pruebas de Neutralización/métodos , SARS-CoV-2/genética , Células Vero , Replicación Viral/efectos de los fármacos , Replicación Viral/inmunología , Sueroterapia para COVID-19
4.
Artículo en Inglés | MEDLINE | ID: mdl-32432049

RESUMEN

Human cytomegalovirus (HCMV) is a prototypic betaherpesvirus which causes severe manifestations in individuals with impaired or immature immunity. To investigate cytomegalovirus-induced pathogenesis and virus-specific immune responses, mouse cytomegalovirus (MCMV) infections in mice are employed as accepted small animal model. MCMV and HCMV share co-linear genomes and encode several homologous proteins. Due to the size and complexity of CMV genomes, the molecular functions of numerous cytomegaloviral gene products remain to be elucidated. While the essential nature of viral genes highlights their biological relevance, it renders functional studies particularly cumbersome by precluding experiments in the infection context. The HCMV-encoded protein pUL34 binds the HCMV genome and regulates viral gene expression (e.g., of US3). Several groups provided compelling evidence that UL34 is essential for HCMV replication. MCMV encodes the homologous protein pM34 (34% identical and 55% similar). Based on unsuccessful attempts to reconstitute M34-deficient virus from a bacterial artificial chromosome (BAC), M34 was previously classified as essential for MCMV replication. To characterize pM34 during viral infection, we engineered and analyzed an MCMV mutant expressing an HA-epitope-tagged pM34 which was expressed with early-late kinetics and localized in the nucleus. Additionally, we generated an M34-deficient ("ΔM34") MCMV-BAC by replacing the entire M34 coding sequence by a kanamycin resistance cassette. The deletion of M34 was confirmed by Southern blot and PCR. Unexpectedly, we could reconstitute replicating ΔM34-MCMV upon transfection of the BAC DNA into mouse embryonic fibroblasts. The absence of M34 from the genome of the replicating ΔM34-MCMV was also confirmed. Accordingly, a ΔM34-MCMV, in which the kanamycin cassette was excised by frt/Flp-mediated recombination, was also replication competent. In order to corroborate the absence of pM34 protein, the M34 deletion was recapitulated on the background of M34HA, which yielded replicating virus devoid of detectable pM34HA protein. The replication of MCMVs lacking M34 was found to be 10- to 100-fold reduced as compared to wt-MCMV which might explain previous unsuccessful reconstitution attempts conducted by others. Taken together, our findings reveal that MCMV remains replication competent despite the absence of M34, enabling functional studies in the infection context.


Asunto(s)
Muromegalovirus , Proteínas Virales/fisiología , Replicación Viral , Animales , Fibroblastos , Ratones , Muromegalovirus/genética , Proteínas Nucleares
5.
Front Immunol ; 9: 2978, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619335

RESUMEN

Viruses and hosts are situated in a molecular arms race. To avoid morbidity and mortality, hosts evolved antiviral restriction factors. These restriction factors exert selection pressure on the viruses and drive viral evolution toward increasingly efficient immune antagonists. Numerous viruses exploit cellular DNA damage-binding protein 1 (DDB1)-containing Cullin RocA ubiquitin ligases (CRLs) to induce the ubiquitination and subsequent proteasomal degradation of antiviral factors expressed by their hosts. To establish a comprehensive understanding of the underlying protein interaction networks, we performed immuno-affinity precipitations for a panel of DDB1-interacting proteins derived from viruses such as mouse cytomegalovirus (MCMV, Murid herpesvirus [MuHV] 1), rat cytomegalovirus Maastricht MuHV2, rat cytomegalovirus English MuHV8, human cytomegalovirus (HCMV), hepatitis B virus (HBV), and human immunodeficiency virus (HIV). Cellular interaction partners were identified and quantified by mass spectrometry (MS) and validated by classical biochemistry. The comparative approach enabled us to separate unspecific interactions from specific binding partners and revealed remarkable differences in the strength of interaction with DDB1. Our analysis confirmed several previously described interactions like the interaction of the MCMV-encoded interferon antagonist pM27 with STAT2. We extended known interactions to paralogous proteins like the interaction of the HBV-encoded HBx with different Spindlin proteins and documented interactions for the first time, which explain functional data like the interaction of the HIV-2-encoded Vpr with Bax. Additionally, several novel interactions were identified, such as the association of the HIV-2-encoded Vpx with the transcription factor RelA (also called p65). For the latter interaction, we documented a functional relevance in antagonizing NF-κB-driven gene expression. The mutation of the DDB1 binding interface of Vpx significantly impaired NF-κB inhibition, indicating that Vpx counteracts NF-κB signaling by a DDB1- and CRL-dependent mechanism. In summary, our findings improve the understanding of how viral pathogens hijack cellular DDB1 and CRLs to ensure efficient replication despite the expression of host restriction factors.


Asunto(s)
VIH-2/inmunología , Unión Proteica/inmunología , Factor de Transcripción ReIA/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , Virosis/inmunología , Animales , Citomegalovirus/inmunología , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Fibroblastos , Regulación de la Expresión Génica/inmunología , Células HEK293 , VIH-2/genética , VIH-2/metabolismo , Virus de la Hepatitis B/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunoprecipitación/métodos , Espectrometría de Masas/métodos , Ratones , Muromegalovirus/inmunología , Células 3T3 NIH , Cultivo Primario de Células , Mapeo de Interacción de Proteínas/métodos , Factor de Transcripción ReIA/inmunología , Factor de Transcripción ReIA/metabolismo , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/inmunología , Virosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...