Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Pharmacol Ther ; 95(2): 179-88, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23995268

RESUMEN

Several drug-drug interaction (DDI) prediction models were evaluated for their ability to identify drugs with cytochrome P450 (CYP)3A induction liability based on in vitro mRNA data. The drug interaction magnitudes of CYP3A substrates from 28 clinical trials were predicted using (i) correlation approaches (ratio of the in vivo peak plasma concentration (Cmax) to in vitro half-maximal effective concentration (EC50); and relative induction score), (ii) a basic static model (calculated R3 value), (iii) a mechanistic static model (net effect), and (iv) mechanistic dynamic (physiologically based pharmacokinetic) modeling. All models performed with high fidelity and predicted few false negatives or false positives. The correlation approaches and basic static model resulted in no false negatives when total Cmax was incorporated; these models may be sufficient to conservatively identify clinical CYP3A induction liability. Mechanistic models that include CYP inactivation in addition to induction resulted in DDI predictions with less accuracy, likely due to an overprediction of the inactivation effect.


Asunto(s)
Citocromo P-450 CYP3A/biosíntesis , Citocromo P-450 CYP3A/genética , Interacciones Farmacológicas , Inducción Enzimática/efectos de los fármacos , Humanos , Técnicas In Vitro , Modelos Biológicos , ARN Mensajero/biosíntesis , ARN Mensajero/genética
2.
Clin Pharmacol Ther ; 95(2): 189-98, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24048277

RESUMEN

Nine static models (seven basic and two mechanistic) and their respective cutoff values used for predicting cytochrome P450 3A (CYP3A) inhibition, as recommended by the US Food and Drug Administration and the European Medicines Agency, were evaluated using data from 119 clinical studies with orally administered midazolam as a substrate. Positive predictive error (PPE) and negative predictive error (NPE) rates were used to assess model performance, based on a cutoff of 1.25-fold change in midazolam area under the curve (AUC) by inhibitor. For reversible inhibition, basic models using total or unbound systemic inhibitor concentration [I] had high NPE rates (46-47%), whereas those using intestinal luminal ([I]gut) values had no NPE but a higher PPE. All basic models for time-dependent inhibition had no NPE and reasonable PPE rates (15-18%). Mechanistic static models that incorporate all interaction mechanisms and organ specific [I] values (enterocyte and hepatic inlet) provided a higher predictive precision, a slightly increased NPE, and a reasonable PPE. Various cutoffs for predicting the likelihood of CYP3A inhibition were evaluated for mechanistic models, and a cutoff of 1.25-fold change in midazolam AUC appears appropriate.


Asunto(s)
Inhibidores del Citocromo P-450 CYP3A , Interacciones Farmacológicas , Drogas en Investigación/efectos adversos , Drogas en Investigación/farmacocinética , Drogas en Investigación/farmacología , Humanos , Técnicas In Vitro , Midazolam/sangre , Midazolam/farmacocinética , Midazolam/farmacología , Modelos Biológicos , Medición de Riesgo
3.
Xenobiotica ; 37(10-11): 1257-94, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17968745

RESUMEN

Three approaches were compared to predict the actual magnitude of drug interaction (the mean fold-change in the area under the curve (AUC)) of reversible or irreversible (mechanism-based) cytochrome P450 (CYP) inhibitors. These were: (1) the pragmatic use of the '[I]/K(i)' approach; (2) the 'Mechanistic-Static Model' (MSM), which is a more complex extension of the '[I]/K(i)' approach that incorporates f(m,CYP), intestinal availability for CYP3A substrates, and mechanism-based inhibition (MBI); and (3) the 'Mechanistic-Dynamic Model' (MDM) which considers the time-variant change in the concentration of the inhibitor by using physiologically-based pharmacokinetic (PBPK) models (as implemented within the Simcyp(R) Population-Based ADME Simulator). The three approaches ([I]/K(i), MSM, and MDM) predicted a 'correct' drug-drug interaction (DDI) result (interaction: Greater than or equal to twofold; no interaction: Less than twofold) in 74, 87, and 80% of the 100 trials evaluated, respectively. Importantly, for trials with a greater than or equal to twofold change in AUC in the presence of the inhibitor (59 trials), the [I]/K(i), MSM, and MDM approaches predicted the mean AUC change within twofold of actual in 17, 53, and 64% of the trials, respectively. Overall, the MDM approach showed an improvement in the prediction of DDI magnitude compared to the other methods evaluated and was useful in its ability to predict variability in DDI magnitude and pharmacokinetic parameters. Moreover, the MDM model allowed the automated prediction of the inhibition of parallel metabolic pathways and simulations of different dosing regimens.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450 , Interacciones Farmacológicas , Modelos Biológicos , Simulación por Computador , Sistema Enzimático del Citocromo P-450/metabolismo , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/farmacocinética , Humanos , Técnicas In Vitro , Xenobióticos/efectos adversos , Xenobióticos/farmacocinética
4.
Mini Rev Med Chem ; 5(2): 183-95, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15720288

RESUMEN

It is increasingly recognized that efflux transporters play an important role, not only in chemo protection e.g. multi-drug resistance, but also in the absorption, distribution, and elimination of drugs. The modulation of drug transporters through inhibition or induction can lead to significant drug-drug interactions by affecting intestinal absorption, renal secretion, and biliary excretion, thereby changing the systemic or target tissue exposure of the drug. Few clinically significant drug interactions that affect efficacy and safety are due to a single mechanism and there is considerable overlap of substrates, inhibitors, and inducers of efflux transporters and drug metabolizing enzymes, such as CYP3A. As well, genetic polymorphisms of efflux transporters have been correlated with human disease and variability of drug exposure. Accordingly, this review will discuss drug interactions and suitable probe substrates, as well as, the clinical relevance of the variability and modulation of efflux transporters and the exploitation of substrates as diagnostic tools. An update is given on inhibitors, which clinically reverse drug resistance and minimize the risk of metabolic interactions.


Asunto(s)
Proteínas Portadoras/metabolismo , Resistencia a Medicamentos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/biosíntesis , Humanos , Preparaciones Farmacéuticas/metabolismo , Polimorfismo Genético
5.
J Biol Chem ; 276(6): 3764-71, 2001 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-11110788

RESUMEN

Nucleotide insertion opposite 8-oxo-7,8-dihydroguanine (8-oxoG) by fetal calf thymus DNA polymerase delta (pol delta) was examined by steady-state and pre-steady-state rapid quench kinetic analyses. In steady-state reactions with the accessory protein proliferating cell nuclear antigen (PCNA), pol delta preferred to incorporate dCTP opposite 8-oxoG with an efficiency of incorporation an order of magnitude lower than incorporation into unmodified DNA (mainly due to an increased K(m)). Pre-steady-state kinetic analysis of incorporation opposite 8-oxoG showed biphasic kinetics for incorporation of either dCTP or dATP, with rates similar to dCTP incorporation opposite G, large phosphorothioate effects (>100), and oligonucleotide dissociation apparently rate-limiting in the steady-state. Although pol delta preferred to incorporate dCTP (14% misincorporation of dATP) the extension past the A:8-oxoG mispair predominated. The presence of PCNA was found to be a more essential factor for nucleotide incorporation opposite 8-oxoG adducts than unmodified DNA, increased pre-steady-state rates of nucleotide incorporation by >2 orders of magnitude, and was essential for nucleotide extension beyond 8-oxoG. pol delta replication fidelity at 8-oxoG depends upon contributions from K(m), K(d)(dNTP), and rates of phosphodiester bond formation, and PCNA is an important accessory protein for incorporation and extension at 8-oxoG adducts.


Asunto(s)
Adenosina Trifosfato/metabolismo , Citidina Trifosfato/metabolismo , ADN Polimerasa III/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Animales , Secuencia de Bases , Bovinos , ADN Polimerasa III/genética , Cartilla de ADN , Humanos , Cinética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Recombinantes/metabolismo
6.
J Biol Chem ; 275(21): 16316-22, 2000 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-10748013

RESUMEN

The kinetics of nucleotide incorporation into 24/36-mer primer/template DNA by purified fetal calf thymus DNA polymerase (pol) delta was examined using steady-state and pre-steady-state kinetics. The role of the pol delta accessory protein, proliferating cell nuclear antigen (PCNA), on DNA replication by pol delta was also examined by kinetic analysis. The steady-state parameter k(cat) was similar for pol delta in the presence and absence of PCNA (0.36 and 0.30 min(-1), respectively); however, the K(m) for dNTP was 20-fold higher in the absence of PCNA (0.067 versus 1.2 microm), decreasing the efficiency of nucleotide insertion. Pre-steady-state bursts of nucleotide incorporation were observed for pol delta in the presence and absence of PCNA (rates of polymerization (k(pol)) of 1260 and 400 min(-1), respectively). The reduction in polymerization rate in the absence of PCNA was also accompanied by a 2-fold decrease in burst amplitude. The steady-state exonuclease rate of pol delta was 0.56 min(-1) (no burst, 10(3)-fold lower than the rate of polymerization). The small phosphorothioate effect of 2 for correct nucleotide incorporation into DNA by pol delta.PCNA indicated that the rate-limiting step in the polymerization cycle occurs prior to phosphodiester bond formation. A K(d)(dNTP) value of 0.93 microm for poldelta.dNTP binding was determined by pre-steady-state kinetics. A 5-fold increase in K(d)(DNA) for the pol delta.DNA complex was measured in the absence of PCNA. We conclude that the major replicative mammalian polymerase, pol delta, exhibits kinetic behavior generally similar to that observed for several prokaryotic model polymerases, particularly a rate-limiting step following product formation in the steady state (dissociation of oligonucleotides) and a rate-limiting step (probably conformational change) preceding phosphodiester bond formation. PCNA appears to affect pol delta replication in this model mainly by decreasing the dissociation of the polymerase from the DNA.


Asunto(s)
ADN Polimerasa III/química , ADN/química , Nucleótidos/química , Animales , Bovinos , Cartilla de ADN , Replicación del ADN , Proteínas de Unión al ADN/química , Nucleótidos de Desoxicitosina/metabolismo , Exonucleasas/metabolismo , Humanos , Cinética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Timo/embriología
7.
Biochemistry ; 37(38): 13300-12, 1998 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-9748338

RESUMEN

The kinetics of 8-oxo-7,8-dihydroguanosine triphosphate (8-oxo-dGTP) incorporation into DNA by Escherichia coli polymerases I exo- (KF-) and II exo- (Pol II-), HIV-1 RT reverse transcriptase (HIV-1 RT), and bacteriophage T7 exo- (T7(-)) were examined to determine the misincorporation potential for 8-oxo-dGTP and to investigate the role of base pairing symmetry in DNA polymerase fidelity. 8-Oxo-dGTP was found to be a poor substrate for the four polymerases, with insertion efficiencies >10(4)-fold lower than for dGTP incorporation. Insertion efficiencies of 8-oxo-dGTP were also consistently lower than for incorporation of dNTPs opposite template 8-oxo-G, previously studied in this laboratory. In steady-state reactions, T7(-) had a high preference for 8-oxo-dGTP insertion opposite A (97%) and HIV-1 RT, KF-, and Pol II- preferred to insert 8-oxo-dGTP opposite C. Misinsertion frequencies for 8-oxo-dGTP also varied considerably from frequencies of misinsertion at template 8-oxo-G adducts for Pol II-, HIV-1 RT, and T7(-). Pre-steady-state incorporation of 8-oxo-dGTP opposite C (but not opposite A) by HIV-1 RT, KF-, and Pol II- displayed biphasic curves, with rates of initial incorporation 2- to 11-fold lower than normal dGTP incorporation. Although extension past template 8-oxo-G adducts had previously been shown to occur preferentially for the mispair, extension past primer 8-oxo-G:template A or C pairs was variable. The low and comparable estimated Kd values for dGTP and 8-oxo-dGTP binding to HIV-1 RT alone or HIV-1 RT.DNA complexes indicated that the initial binding was nonselective and had high affinity. The large difference (>3 orders of magnitude) in kinetic Kdapp values for 8-oxo-dGTP and dGTP binding to HIV-1 RT.DNA indicates that there are contributions to the kinetically determined Kdapp (such as conformational change and/or phosphodiester bond formation) which may be involved in the selection against 8-oxo-dGTP. The differences in binding (Kdapp), incorporation, and extension kinetics of 8-oxo-dGTP compared to normal dNTP incorporation at template 8-oxo-G adducts indicate that polymerase fidelity does not depend solely upon the overall geometry of Watson-Crick base pairs and reflects the asymmetry of the enzyme active site.


Asunto(s)
Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Bacteriófago T7/enzimología , Composición de Base , ADN Polimerasa I/metabolismo , ADN Polimerasa II/metabolismo , Cartilla de ADN/metabolismo , Transcriptasa Inversa del VIH/metabolismo , Cinética , Sustancias Macromoleculares , Moldes Genéticos
8.
Chem Res Toxicol ; 10(5): 609-17, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9168260

RESUMEN

The environmental contaminant benzo[c]phenanthrene (B[c]Ph) has weak carcinogenic activity in rodent bioassays; however, the fjord region diol epoxides of B[c]Ph, B[c]Ph-3,4-diol 1,2-epoxides (B[c]PhDE), are potent carcinogens. To determine the role of cytochrome P450 isozymes in the activation of B[c]Ph in MCF-7 cells and the low activation of B[c]Ph in mouse skin, cells of the MCF-7 and the human hepatoma HepG2 cell lines were treated with the potent Ah receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prior to exposure to B[c]Ph for 24 h. Mice were treated topically with 1 microg of TCDD or vehicle (control) for 73 h and then with 2 micromol of B[c]Ph for 24 h. In MCF-7 cells, TCDD exposure increased B[c]PhDE-DNA adduct levels more than 3-fold with a 10-fold increase in the (-)-B[c]PhDE-2-dA(t) adduct. Treatment of HepG2 cells with TCDD prior to B[c]Ph application did not increase B[c]PhDE-DNA binding. Total B[c]PhDE-DNA adducts increased 3-fold in TCDD-treated mouse epidermis: the majority of the increase resulted from (+)-B[c]PhDE-1-dA adducts. Analysis of P450 enzymes by Western blotting detected a large increase of P4501B1 but almost no increase in P4501A1 in MCF-7 cells exposed to 10 microM B[c]Ph for 24 or 48 h. In HepG2 cells, there were no detectable levels of P4501A1 or P4501B1 after treatment with 10 microM B[c]Ph for 24 h. In contrast, topical application of 2 micromol of B[c]Ph to mouse skin for 48 or 72 h increased P4501A1, but no P4501B1 was detected. As a measure of P450 activity, the metabolism of 7,12-dimethylbenz[a]anthracene (DMBA) was analyzed in microsomes prepared from MCF-7 and HepG2 cells exposed to 0.1% DMSO, 10 microM B[c]Ph, or 10 nM TCDD for 24 or 48 h and from mouse epidermis treated with 1 microg of TCDD, or vehicle control for 72 h, or 2 micromol of B[c]Ph for 48 h. The levels of DMBA metabolites were low or undetectable in microsomes from B[c]Ph-treated MCF-7 and HepG2 cells, but a metabolite pattern consistent with P4501A1 metabolism of DMBA was present in B[c]Ph-exposed mouse epidermal microsomes. TCDD-treated MCF-7 cells, HepG2 cells, and mouse epidermis had DMBA metabolism patterns characteristic of P4501A1 activity. Microsomes from TCDD-treated human cells formed a higher proportion of the proximate carcinogenic metabolite DMBA-3,4-dihydrodiol (16% of total identified metabolites) than TCDD-treated mouse epidermis (2%). In mouse epidermis, the weak ability of B[c]Ph to increase hydrocarbon-metabolizing activity and the increase in mainly P4501A1, leading to formation of the less carcinogenic stereoisomer B[c]PhDE-1, may explain the low carcinogenic activity of B[c]Ph. In a human mammary carcinoma cell line, treatment with B[c]Ph increases mainly P4501B1 and results in formation of a higher proportion of the more carcinogenic B[c]PhDE-2. This indicates that cells in which B[c]Ph treatment increases P4501B1 levels effectively activate B[c]Ph to potent carcinogenic metabolites.


Asunto(s)
Carcinógenos/farmacocinética , Sistema Enzimático del Citocromo P-450/biosíntesis , Epidermis/enzimología , Fenantrenos/farmacocinética , Animales , Biotransformación , Neoplasias de la Mama , Carcinoma Hepatocelular , Sistema Enzimático del Citocromo P-450/fisiología , Inducción Enzimática/fisiología , Células Epidérmicas , Epidermis/efectos de los fármacos , Femenino , Humanos , Neoplasias Hepáticas , Ratones , Ratones Endogámicos SENCAR , Células Tumorales Cultivadas
9.
Carcinogenesis ; 17(10): 2237-44, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8895494

RESUMEN

Benzo[c]phenanthrene (B[c]Ph) is an environmental contaminant with low carcinogenic activity in rodent bioassays. B[c]Ph-3,4-diol-1,2-epoxides (B[c]PhDE), however, are among the most tumorigenic diol epoxides known. To determine whether human cells are capable of activating B[c]Ph to DNA-binding metabolites, cultures of the human mammary cell line, MCF-7, were exposed to 10 microM B[c]Ph for 48, 72 and 96 h or to 1 microM (+/-)-B[c]Ph-3,4-dihydrodiol for 48 h. The B[c]Ph-DNA adducts were analyzed by 33P-postlabeling and reverse-phase HPLC. The major B[c]Ph-DNA adducts were formed by the trans-addition of (4R,3S)-dihydroxy-(2S,1R)-epoxy-1,2,3,4-tetrahydro-B[c]Ph to deoxyadenosine [(-)-B[c]PhDE-2dAt] and by the cis- and trans-addition of (4S,3R)-dihydroxy-(2S,1R)-epoxy-1,2,3,4-tetrahydro-B[c]Ph to deoxyadenosine [(+)-B[c]PhDE-1dAc and (+)-B[c]PhDE-1dAt]. Smaller amounts of the trans-addition of (-)-B[c]PhDE-2 were bound to deoxyguanosine. To determine whether B[c]Ph can be metabolically activated to diol epoxides in mouse epidermis, female SENCAR mice were treated topically with 2 micromol B[c]Ph for 24, 48 or 72 h or with 0.4 micromol (+/-)-B[c]Ph-3,4-dihydrodiol for 24 or 48 h. In B[c]Ph-treated mice, only small amounts of three B[c]PhDE-DNA adducts were detected [(-)-B[c]PhDE-2dAt, (+)-B[c]PhDE-1dAt and (+)-B[c]PhDE-1dAc] at 24, 48 and 72 h. In contrast, mice treated topically with 0.4 micromol (+/-)-B[c]Ph-3,4-dihydrodiol formed B[c]PhDE-DNA adducts at levels 6-fold greater than those observed with B[c]Ph at 48 h. The higher formation of B[c]PhDE-DNA adducts by (+/-)-B[c]Ph-3,4-dihydrodiol correlates with the greater potency of (+/-)-B[c]Ph-3,4-dihydrodiol than of B[c]Ph as a tumor initiator in mouse skin. The low extent of formation of B[c]PhDE from B[c]Ph in mouse epidermis may explain the low tumorigenicity of B[c]Ph in this tissue. These results indicate activation of B[c]Ph in mouse skin and tumorigenesis results in that tissue may not adequately assess the potential capability of cells from humans to activate B[c]Ph to ultimate carcinogenic metabolites.


Asunto(s)
Neoplasias de la Mama/metabolismo , Pruebas de Carcinogenicidad/métodos , Carcinoma/metabolismo , Aductos de ADN/metabolismo , Fenantrenos/metabolismo , Piel/metabolismo , Animales , Biotransformación , ADN de Neoplasias/metabolismo , Compuestos Epoxi , Femenino , Humanos , Ratones , Especificidad de la Especie , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA